MAKEFLAGS += --no-print-directory define validate_model_path @if [ -z "$(MODEL_PATH)" ]; then \ echo "Error: MODEL_PATH must be provided either as:"; \ echo " 1. Environment variable: export MODEL_PATH=/path/to/model"; \ echo " 2. Command line argument: make $(1) MODEL_PATH=/path/to/model"; \ exit 1; \ fi endef define validate_embedding_model_path @if [ -z "$(EMBEDDING_MODEL_PATH)" ]; then \ echo "Error: EMBEDDING_MODEL_PATH must be provided either as:"; \ echo " 1. Environment variable: export EMBEDDING_MODEL_PATH=/path/to/model"; \ echo " 2. Command line argument: make $(1) EMBEDDING_MODEL_PATH=/path/to/model"; \ exit 1; \ fi endef define quantize_model @CONVERTED_MODEL="$(1)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" \ TOKEN_EMBD_TYPE="$(TOKEN_EMBD_TYPE)" OUTPUT_TYPE="$(OUTPUT_TYPE)" \ ./scripts/utils/quantize.sh "$(1)" "$(QUANTIZED_TYPE)" "$(TOKEN_EMBD_TYPE)" "$(OUTPUT_TYPE)" @echo "Export the quantized model path to $(2) variable in your environment" endef ### ### Casual Model targets/recipes ### causal-convert-model-bf16: OUTTYPE=bf16 causal-convert-model-bf16: causal-convert-model causal-convert-model: $(call validate_model_path,causal-convert-model) @MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \ METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ ./scripts/causal/convert-model.sh causal-convert-mm-model-bf16: OUTTYPE=bf16 causal-convert-mm-model-bf16: MM_OUTTYPE=f16 causal-convert-mm-model-bf16: causal-convert-mm-model causal-convert-mm-model: $(call validate_model_path,causal-convert-mm-model) @MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \ METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ ./scripts/causal/convert-model.sh @MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(MM_OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \ METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ ./scripts/causal/convert-model.sh --mmproj causal-run-original-model: $(call validate_model_path,causal-run-original-model) @MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py causal-run-converted-model: @CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh causal-verify-logits: causal-run-original-model causal-run-converted-model @./scripts/causal/compare-logits.py @MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH} causal-run-original-embeddings: @./scripts/causal/run-casual-gen-embeddings-org.py causal-run-converted-embeddings: @./scripts/causal/run-converted-model-embeddings-logits.sh causal-verify-embeddings: causal-run-original-embeddings causal-run-converted-embeddings @./scripts/causal/compare-embeddings-logits.sh causal-inspect-original-model: @./scripts/utils/inspect-org-model.py causal-inspect-converted-model: @./scripts/utils/inspect-converted-model.sh causal-start-embedding-server: @./scripts/utils/run-embedding-server.sh ${CONVERTED_MODEL} causal-curl-embedding-endpoint: causal-run-original-embeddings @./scripts/utils/curl-embedding-server.sh | ./scripts/causal/compare-embeddings-logits.sh causal-quantize-Q8_0: QUANTIZED_TYPE = Q8_0 causal-quantize-Q8_0: causal-quantize-model causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0 causal-quantize-Q4_0: causal-quantize-model # For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the # token embedding and output types to Q8_0 instead of the default Q6_K. causal-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0 causal-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0 causal-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0 causal-quantize-qat-Q4_0: causal-quantize-model causal-quantize-model: $(call quantize_model,$(CONVERTED_MODEL),QUANTIZED_MODEL) causal-run-quantized-model: @QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL} ### ### Embedding Model targets/recipes ### embedding-convert-model-bf16: OUTTYPE=bf16 embedding-convert-model-bf16: embedding-convert-model embedding-convert-model: $(call validate_embedding_model_path,embedding-convert-model) @MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \ METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ ./scripts/embedding/convert-model.sh embedding-run-original-model: $(call validate_embedding_model_path,embedding-run-original-model) @EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \ ./scripts/embedding/run-original-model.py \ $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") embedding-run-converted-model: @./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \ $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") embedding-verify-logits: embedding-run-original-model embedding-run-converted-model @./scripts/embedding/compare-embeddings-logits.sh \ $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") embedding-inspect-original-model: $(call validate_embedding_model_path,embedding-inspect-original-model) @EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/utils/inspect-org-model.py -m ${EMBEDDING_MODEL_PATH} embedding-inspect-converted-model: @CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/utils/inspect-converted-model.sh ${CONVERTED_EMBEDDING_MODEL} embedding-start-embedding-server: @./scripts/utils/run-embedding-server.sh ${CONVERTED_EMBEDDING_MODEL} embedding-curl-embedding-endpoint: @./scripts/utils/curl-embedding-server.sh | ./scripts/embedding/compare-embeddings-logits.sh embedding-quantize-Q8_0: QUANTIZED_TYPE = Q8_0 embedding-quantize-Q8_0: embedding-quantize-model embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0 embedding-quantize-Q4_0: embedding-quantize-model # For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the # token embedding and output types to Q8_0 instead of the default Q6_K. embedding-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0 embedding-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0 embedding-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0 embedding-quantize-qat-Q4_0: embedding-quantize-model embedding-quantize-model: $(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL) embedding-run-quantized-model: @./scripts/embedding/run-converted-model.sh $(QUANTIZED_EMBEDDING_MODEL) \ $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") ### ### Perplexity targets/recipes ### perplexity-data-gen: CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/utils/perplexity-gen.sh perplexity-run-full: QUANTIZED_MODEL="$(QUANTIZED_MODEL)" LOOGITS_FILE="$(LOGITS_FILE)" \ ./scripts/utils/perplexity-run.sh perplexity-run: QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/utils/perplexity-run-simple.sh ### ### HuggingFace targets/recipes ### hf-create-model: @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" hf-create-model-dry-run: @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -d hf-create-model-embedding: @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e hf-create-model-embedding-dry-run: @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e -d hf-create-model-private: @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -p hf-upload-gguf-to-model: @./scripts/utils/hf-upload-gguf-model.py -m "${MODEL_PATH}" -r "${REPO_ID}" -o "${NAME_IN_REPO}" hf-create-collection: @./scripts/utils/hf-create-collection.py -n "${NAME}" -d "${DESCRIPTION}" -ns "${NAMESPACE}" hf-add-model-to-collection: @./scripts/utils/hf-add-model-to-collection.py -c "${COLLECTION}" -m "${MODEL}" .PHONY: clean clean: @${RM} -rf data .converted_embedding_model.txt .converted_model.txt .embedding_model_name.txt .model_name.txt