#include "unary.cuh" static __device__ __forceinline__ float op_abs(float x) { return fabsf(x); } static __device__ __forceinline__ float op_sgn(float x) { return (x > 0.f ? 1.f : ((x < 0.f ? -1.f : 0.f))); } static __device__ __forceinline__ float op_neg(float x) { return -x; } static __device__ __forceinline__ float op_step(float x) { return x > 0.0f; } static __device__ __forceinline__ float op_gelu(float x) { const float GELU_COEF_A = 0.044715f; const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); } static __device__ __forceinline__ float op_gelu_erf(float x) { const float SQRT_2_INV = 0.70710678118654752440084436210484f; return 0.5f*x*(1.0f + erff(x*SQRT_2_INV)); } static __device__ __forceinline__ float op_gelu_quick(float x) { const float GELU_QUICK_COEF = -1.702f; return x * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x))); } static __device__ __forceinline__ float op_silu(float x) { return x / (1.0f + expf(-x)); } static __device__ __forceinline__ float op_tanh(float x) { return tanhf(x); } static __device__ __forceinline__ float op_relu(float x) { return fmaxf(x, 0); } static __device__ __forceinline__ float op_sigmoid(float x) { return 1.0f / (1.0f + expf(-x)); } static __device__ __forceinline__ float op_hardsigmoid(float x) { return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f)); } static __device__ __forceinline__ float op_hardswish(float x) { return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f)); } static __device__ __forceinline__ float op_exp(float x) { return expf(x); } static __device__ __forceinline__ float op_sqr(float x) { return x * x; } static __device__ __forceinline__ float op_sqrt(float x) { return sqrtf(x); } static __device__ __forceinline__ float op_sin(float x) { return sinf(x); } static __device__ __forceinline__ float op_cos(float x) { return cosf(x); } static __device__ __forceinline__ float op_log(float x) { return logf(x); } static __device__ __forceinline__ float op_elu(float x) { return (x > 0.f) ? x : expm1f(x); } template static __global__ void unary_op_kernel(const T * x, T * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = (T)op((float)x[i]); } template static void unary_cuda(const T * x, T * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE; unary_op_kernel<<>>(x, dst, k); } template void ggml_cuda_op_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const void * src0_d = src0->data; void * dst_d = dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); if (src0->type == GGML_TYPE_F16) { unary_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream); } else { unary_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream); } } void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_gelu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } void ggml_cuda_op_elu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary(ctx, dst); } /* gated ops */ template static __global__ void unary_gated_op_kernel(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1) { const int64_t i = int64_t(blockDim.x)*blockIdx.x + threadIdx.x; if (i >= k) { return; } // perform base op and multiply with gate (either offset in same tensor or a separate one) const int64_t j0 = (i / n) * o0 + (i % n); const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n); dst[i] = (T)(op((float)x[j0]) * (float)g[j1]); } template static void unary_gated_cuda(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1, cudaStream_t stream) { const int64_t num_blocks = (k + CUDA_GLU_BLOCK_SIZE - 1) / CUDA_GLU_BLOCK_SIZE; unary_gated_op_kernel<<>>(x, g, dst, k, n, o0, o1); } template void ggml_cuda_op_unary_gated(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; void * src0_d = src0->data; void * src1_d = src1 ? src1->data : src0->data; const int64_t src0_o = src0->nb[1]; const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; void * dst_d = dst->data; const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous_1(src0)); GGML_ASSERT(src0->nb[0] == ggml_element_size(src0)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); GGML_ASSERT(dst->ne[0] == nc); GGML_ASSERT(ggml_nrows(dst) == ggml_nrows(src0)); if (src1) { GGML_ASSERT(ggml_is_contiguous_1(src1)); GGML_ASSERT(src1->nb[0] == ggml_element_size(src1)); GGML_ASSERT(src1->ne[0] == nc); GGML_ASSERT(src0->type == src1->type); } const int32_t swapped = ((const int32_t *) dst->op_params)[1]; if (src0->type == GGML_TYPE_F16) { half * src0_p = (half *) src0_d; half * src1_p = (half *) src1_d; if (!src1) { src0_p += swapped ? nc : 0; src1_p += swapped ? 0 : nc; } unary_gated_cuda(src0_p, src1_p, (half *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(half), src1_o / sizeof(half), stream); } else { float * src0_p = (float *) src0_d; float * src1_p = (float *) src1_d; if (!src1) { src0_p += swapped ? nc : 0; src1_p += swapped ? 0 : nc; } unary_gated_cuda(src0_p, src1_p, (float *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(float), src1_o / sizeof(float), stream); } } void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary_gated(ctx, dst); } void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary_gated(ctx, dst); } void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary_gated(ctx, dst); } void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary_gated(ctx, dst); } void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_unary_gated(ctx, dst); } /* silu_back */ static __device__ __forceinline__ float op_silu_back(float grad, float x) { const float s = 1.0f / (1.0f + expf(-x)); return grad * s * (1.0f + x * (1.0f - s)); } template static __global__ void silu_back_kernel(const T * grad, const T * xf, T * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = (T)op_silu_back((float)grad[i], (float)xf[i]); } template static void silu_back_cuda(const T * grad, const T * x, T * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; silu_back_kernel<<>>(grad, x, dst, k); } void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; // input from forward pass const ggml_tensor * src1 = dst->src[1]; // grads of forward pass output const float * src0_d = (const float *) src0->data; const float * src1_d = (const float *) src1->data; float * dst_d = (float *) dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); if (src0->type == GGML_TYPE_F16) { silu_back_cuda((const half *)src0_d, (const half *)src1_d, (half *)dst_d, ggml_nelements(src0), stream); } else { silu_back_cuda((const float*)src0_d, (const float*)src1_d, (float *)dst_d, ggml_nelements(src0), stream); } } /* leaky relu */ static __device__ __forceinline__ float op_leaky_relu(float x, const float negative_slope) { return fmaxf(x, 0) + fminf(x, 0.0f) * negative_slope; } template static __global__ void leaky_relu_kernel(const T * x, T * dst, const int k, const float negative_slope) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = (T)op_leaky_relu((float)x[i], negative_slope); } template static void leaky_relu_cuda(const T * x, T * dst, const int k, const float negative_slope, cudaStream_t stream) { const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; leaky_relu_kernel<<>>(x, dst, k, negative_slope); } void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const void * src0_d = src0->data; void * dst_d = dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); if (src0->type == GGML_TYPE_F16) { leaky_relu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), negative_slope, stream); } else { leaky_relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), negative_slope, stream); } }