#include "zdnn.h" #include "ggml-zdnn.h" #include "ggml-zdnn-impl.h" #include "ggml-impl.h" #include "ggml-backend-impl.h" #include #include #include #include inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) { switch (type) { case GGML_TYPE_F32: return FP32; case GGML_TYPE_F16: return FP16; case GGML_TYPE_BF16: return BFLOAT; case GGML_TYPE_I8: return INT8; case GGML_TYPE_I32: return INT32; case GGML_TYPE_Q8_0: return INT8; default: GGML_ABORT("%s: fatal: unable to determine zTensor data type", __func__); break; } } inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc, zdnn_tensor_desc & tfm_desc, zdnn_ztensor & ztensor, const ggml_tensor * src, const int64_t * ne, const zdnn_data_layouts layout) { zdnn_init_pre_transformed_desc( layout, ggml_zdnn_type_mapping(src->type), &pre_tfm_desc, ne[3], ne[2], ne[1], ne[0] ); ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc)); ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor)); } inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor, void * buffer) { ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer)); } inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) { switch (tensor->op) { case GGML_OP_MUL_MAT: { zdnn_init_pre_transformed_desc( ZDNN_2D, ggml_zdnn_type_mapping(tensor->type), &buffer->pre_tfm_desc, tensor->ne[1], tensor->ne[0] ); } break; default: { // For 4D tensors, GGML uses NCHW layout. However, because zDNN // automatically transforms everything to NHWC, we will use it // directly to avoid the performance penalty changing the // layout and reshaping the tensor. zdnn_init_pre_transformed_desc( ZDNN_NHWC, ggml_zdnn_type_mapping(tensor->type), &buffer->pre_tfm_desc, tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0] ); // TODO: Consider adding a ggml check. // TODO: If tensor = 4D, use ZDNN_NCHW by default. // TODO: If tensor = 2D, use ZDNN_NHWC by default. } break; } ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc)); ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor)); } static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_TENSOR_BINARY_OP_LOCALS; const enum ggml_type type = src0->type; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); const ggml_tensor * weights = src0; const ggml_tensor * inputs = src1; ggml_tensor * output = dst; ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra; ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra; ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra; zdnn_tensor_desc ptd_bias, td_bias; zdnn_ztensor zt_bias; const int64_t weights_rows = ne01; const int64_t weights_cols = ne00; const int64_t inputs_rows = ne11; const int64_t inputs_cols = ne10; assert(inputs_cols == weights_cols); const int64_t output_rows = ne1; const int64_t output_cols = ne0; const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols }; ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D); void * bias_data = (void *)calloc(ne0, ggml_element_size(output)); if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data); if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data); ggml_zdnn_load_tensor(zt_bias, bias_data); // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", // __func__, weights_extra->name, // weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0], // weights_extra->pre_tfm_desc.dim1, // weights_extra->pre_tfm_desc.dim2, // weights_extra->pre_tfm_desc.dim3, // weights_extra->pre_tfm_desc.dim4); // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", // __func__, inputs_extra->name, // inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0], // inputs_extra->pre_tfm_desc.dim1, // inputs_extra->pre_tfm_desc.dim2, // inputs_extra->pre_tfm_desc.dim3, // inputs_extra->pre_tfm_desc.dim4); GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]"); GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]"); GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]"); GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]"); ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias, false, true, MATMUL_OP_ADDITION, &output_extra->ztensor)); // TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient. ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data)); ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias)); free(bias_data); } static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { bool use_mul_mat_vec = (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && src0->ne[0] % 2 == 0 && src1->ne[1] == 1; bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; bool use_mul_mat_q = ggml_is_quantized(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; // debug helpers // GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec); // GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q); // GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q); // GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); // GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); // GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); // GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2] * src1->ne[3] > 1) { // general KQ + KQV multi-batch GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__); // ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst); } else if (use_mul_mat_vec) { GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__); // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr); } else if (use_mul_mat_vec_q) { GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__); // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1); } else if (use_mul_mat_q) { GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__); // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1); } else { // GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__); ggml_zdnn_mul_mat_op(ctx, src0, src1, dst); } } static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) { switch (dst->op) { case GGML_OP_MUL_MAT: ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst); break; default: return false; } return true; } static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) { ggml_backend_zdnn_context * ctx = ( ggml_backend_zdnn_context *)backend->context; ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context; ctx->gf = gf; for (int i = 0; i < gf->n_nodes; i++) { ggml_tensor * node = gf->nodes[i]; if (ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE) { continue; } bool ok = ggml_zdnn_compute_forward(ctx, node); if (!ok) { GGML_LOG_ERROR("%s: unsupported op %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); } GGML_ASSERT(ok); } return GGML_STATUS_SUCCESS; } static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) { switch (op->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: return true; case GGML_OP_MUL_MAT: { const ggml_tensor * src0 = op->src[0]; const ggml_tensor * src1 = op->src[1]; const int64_t ne10 = src1->ne[0]; const int64_t ne0 = op->ne[0]; const int64_t ne1 = op->ne[1]; const int64_t max_batch = ctx_dev->max_size; return ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && (ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch); } break; default: return false; } GGML_UNUSED(ctx_dev); } //////////////////////////////////////////////////////////////////////////////// // // globals // // initialised in ggml_backend_zdnn_reg static ggml_backend_reg g_ggml_backend_zdnn_reg; static ggml_backend_device g_ggml_backend_zdnn_device; static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = { /* .zdnn_device = */ 0, /* .zdnn_device_ref_count = */ 0, /* .has_parmblkformat_0 = */ false, /* .has_parmblkformat_1 = */ false, /* .max_size = */ 0, /* .name = */ "", }; static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) { assert(ctx != NULL); if (ctx->zdnn_device == 0) { ctx->zdnn_device = 1; } if (ctx->zdnn_device >= 1) { ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0); ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1); ctx->max_size = zdnn_get_nnpa_max_dim_idx_size(); strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1); } ctx->zdnn_device_ref_count++; return ctx->zdnn_device; } static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) { assert(ctx != NULL); assert(ctx->zdnn_device_ref_count > 0); ctx->zdnn_device_ref_count--; if (ctx->zdnn_device_ref_count == 0) { if (ctx->zdnn_device >= 0) { ctx->zdnn_device = 0; } } } static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) { GGML_LOG_INFO("%s: allocating\n", __func__); GGML_LOG_INFO("%s: found 1 device\n", __func__); #ifdef STATIC_LIB zdnn_init(); #endif ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context(); ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context; int device = 1; GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name); ctx->device = device; GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name); GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false"); GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false"); ctx->gf = nullptr; return ctx; } static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) { GGML_LOG_INFO("%s: deallocating\n", __func__); delete ctx; } // // backend interface // static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; for (int i = 0; i < ctx->n_buffers; i++) { if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) { ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor)); } } delete ctx; } static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) { ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; return ctx->all_data; } static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { if (tensor->view_src != NULL) { assert(tensor->view_src->buffer->buft == buffer->buft); return GGML_STATUS_SUCCESS; } ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; const int64_t tsize = ggml_nbytes(tensor); int buffer_idx = ctx->n_buffers; std::unique_ptr zdnn_buffer = std::make_unique(); zdnn_buffer->data = tensor->data; zdnn_buffer->size = tsize; strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1); ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor); tensor->extra = zdnn_buffer.get(); ctx->buffers.push_back(std::move(zdnn_buffer)); ctx->n_buffers++; // GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n", // __func__, tensor->name, buffer_idx, tsize); return GGML_STATUS_SUCCESS; } static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { memset((char *)tensor->data + offset, value, size); GGML_UNUSED(buffer); } static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; memset(ctx->all_data, value, ctx->all_size); } static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = { /* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer, /* .get_base = */ ggml_backend_zdnn_buffer_get_base, /* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor, /* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor, /* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor, /* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor, /* .cpy_tensor = */ NULL, /* .clear = */ ggml_backend_zdnn_buffer_clear, /* .reset = */ NULL, }; // // default buffer type // static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return GGML_ZDNN_NAME; GGML_UNUSED(buft); } static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context(); const size_t size_page = sysconf(_SC_PAGESIZE); size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += size_page - (size_aligned % size_page); } ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context; GGML_ASSERT(ctx_dev->zdnn_device >= 0); int device = ctx_dev->zdnn_device; GGML_UNUSED(device); ctx->all_data = ggml_aligned_malloc(size_aligned); ctx->all_size = size_aligned; ctx->owned = true; ctx->n_buffers = 1; if (ctx->all_data != NULL) { std::unique_ptr zdnn_buffer = std::make_unique(); zdnn_buffer->data = ctx->all_data; zdnn_buffer->size = size_aligned; ctx->buffers.push_back(std::move(zdnn_buffer)); } if (size_aligned > 0 && (ctx->all_data == NULL)) { GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n", __func__, size_aligned / 1024.0 / 1024.0); delete ctx; return NULL; } return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size); } static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 256; GGML_UNUSED(buft); } static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; GGML_UNUSED(buft); } ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) { static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = { /* .iface = */ { /* .get_name = */ ggml_backend_zdnn_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, /* .get_max_size = */ NULL, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, }, /* .device = */ &g_ggml_backend_zdnn_device, /* .context = */ NULL, }; return &ggml_backend_buffer_type_zdnn; } static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) { return GGML_ZDNN_NAME "_Mapped"; GGML_UNUSED(buft); } static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) { static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = { /* .iface = */ { /* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name, /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, /* .get_max_size = */ NULL, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, }, /* .device = */ &g_ggml_backend_zdnn_device, /* .context = */ NULL, }; return &ggml_backend_buffer_from_ptr_type_zdnn; } // // backend // static const char * ggml_backend_zdnn_name(ggml_backend_t backend) { return GGML_ZDNN_NAME; GGML_UNUSED(backend); } static void ggml_backend_zdnn_free(ggml_backend_t backend) { ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context; ggml_zdnn_free(ctx); free(backend); } static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { return ggml_zdnn_graph_compute(backend, cgraph); } static ggml_backend_i ggml_backend_zdnn_i = { /* .get_name = */ ggml_backend_zdnn_name, /* .free = */ ggml_backend_zdnn_free, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_zdnn_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, }; static ggml_guid_t ggml_backend_zdnn_guid(void) { static const char * guid_str = "IBM-ZDNN-ACCELER"; return reinterpret_cast((void *)guid_str); } // TODO: remove in the future ggml_backend_t ggml_backend_zdnn_init(void) { ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0); ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); if (ctx == NULL) { GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); return NULL; } ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend)); *backend = (ggml_backend) { /* .guid = */ ggml_backend_zdnn_guid(), /* .iface = */ ggml_backend_zdnn_i, /* .device = */ dev, /* .context = */ ctx, }; return backend; } bool ggml_backend_is_zdnn(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid()); GGML_UNUSED(backend); } // // backend device // static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) { return GGML_ZDNN_NAME; GGML_UNUSED(dev); } static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) { return "IBM Z Neural Network Processing Assist (NNPA)"; } static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { *free = 0; *total = 0; } static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) { return GGML_BACKEND_DEVICE_TYPE_ACCEL; GGML_UNUSED(dev); } static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) { props->name = ggml_backend_zdnn_device_get_name(dev); props->description = ggml_backend_zdnn_device_get_description(dev); props->type = ggml_backend_zdnn_device_get_type(dev); ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = (ggml_backend_dev_caps) { /* .async = */ false, /* .host_buffer = */ false, /* .buffer_from_host_ptr = */ true, /* .events = */ false, }; } static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) { ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); if (ctx == NULL) { GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); return NULL; } ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend)); *backend = (ggml_backend) { /* .guid = */ ggml_backend_zdnn_guid(), /* .iface = */ ggml_backend_zdnn_i, /* .device = */ dev, /* .context = */ ctx, }; return backend; GGML_UNUSED(params); } static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) { return ggml_backend_zdnn_buffer_type(); GGML_UNUSED(dev); } static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context(); ctx->all_data = ptr; ctx->all_size = size; ctx->owned = false; ctx->n_buffers = 0; const size_t size_page = sysconf(_SC_PAGESIZE); // page-align the data ptr { const uintptr_t offs = (uintptr_t) ptr % size_page; ptr = (void *)((char *)ptr - offs); size += offs; } size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += size_page - (size_aligned % size_page); } ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context; GGML_ASSERT(ctx_dev->zdnn_device >= 0); int device = ctx_dev->zdnn_device; GGML_UNUSED(device); std::unique_ptr zdnn_buffer = std::make_unique(); zdnn_buffer->data = ptr; zdnn_buffer->size = size; ctx->buffers.push_back(std::move(zdnn_buffer)); GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0); ++ctx->n_buffers; return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size); } static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context; return ggml_zdnn_supports_op(ctx_dev, op); } static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name || buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name; GGML_UNUSED(dev); } static ggml_backend_device_i ggml_backend_zdnn_device_i = { /* .get_name = */ ggml_backend_zdnn_device_get_name, /* .get_description = */ ggml_backend_zdnn_device_get_description, /* .get_memory = */ ggml_backend_zdnn_device_get_memory, /* .get_type = */ ggml_backend_zdnn_device_get_type, /* .get_props = */ ggml_backend_zdnn_device_get_props, /* .init_backend = */ ggml_backend_zdnn_device_init, /* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr, /* .supports_op = */ ggml_backend_zdnn_device_supports_op, /* .supports_buft = */ ggml_backend_zdnn_device_supports_buft, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; // // backend registry // static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) { return GGML_ZDNN_NAME; GGML_UNUSED(reg); } static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) { if (!zdnn_is_nnpa_installed()) { return 0; } return 1; GGML_UNUSED(reg); } static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) { GGML_ASSERT(index == 0); return &g_ggml_backend_zdnn_device; GGML_UNUSED(reg); GGML_UNUSED(index); } static ggml_backend_feature g_ggml_backend_zdnn_features[] = { { "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" }, { "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" }, { "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" }, { NULL, NULL }, }; static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) { return g_ggml_backend_zdnn_features; GGML_UNUSED(reg); } static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) { if (strcmp(name, "ggml_backend_get_features") == 0) { return (void *) ggml_backend_zdnn_get_features; } return NULL; GGML_UNUSED(reg); } static ggml_backend_reg_i ggml_backend_zdnn_reg_i = { /* .get_name = */ ggml_backend_zdnn_reg_get_name, /* .get_device_count = */ ggml_backend_zdnn_reg_device_count, /* .get_device = */ ggml_backend_zdnn_reg_device_get, /* .get_proc_address = */ ggml_backend_zdnn_get_proc_address, }; static void ggml_zdnn_cleanup(void) { ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main); } // TODO: make thread-safe ggml_backend_reg_t ggml_backend_zdnn_reg(void) { ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main); // register cleanup callback atexit(ggml_zdnn_cleanup); { g_ggml_backend_zdnn_reg = (ggml_backend_reg) { /* .api_version = */ GGML_ZDNN_VERSION, /* .iface = */ ggml_backend_zdnn_reg_i, /* .context = */ NULL, }; g_ggml_backend_zdnn_device = (ggml_backend_device) { /* .iface = */ ggml_backend_zdnn_device_i, /* .reg = */ &g_ggml_backend_zdnn_reg, /* .context = */ &g_ggml_ctx_dev_main, }; return &g_ggml_backend_zdnn_reg; } } GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)