#include "cpy.cuh" #include "dequantize.cuh" #include "cpy-utils.cuh" #ifdef GGML_USE_MUSA #include "ggml-musa/mudnn.cuh" #endif // GGML_USE_MUSA typedef void (*cpy_kernel_t)(const char * cx, char * cdst); template static __global__ void cpy_flt(const char * cx, char * cdst_direct, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { const int64_t i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= ne) { return; } char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct; // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor // then combine those indices with the corresponding byte offsets to get the total offsets const int64_t i03 = i/(ne00 * ne01 * ne02); const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; const int64_t i13 = i/(ne10 * ne11 * ne12); const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13; cpy_1(cx + x_offset, cdst + dst_offset); } static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) { float * cdstf = (float *)(cdsti); #pragma unroll for (int j = 0; j < QK8_0; j += 2) { dfloat2 dq; dequantize_q8_0(cxi, 0, j, dq); *(cdstf + j) = dq.x; *(cdstf + j + 1) = dq.y; } } template static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) { float * cdstf = (float *)(cdsti); #pragma unroll for (int j = 0; j < qk/2; j++) { dfloat2 dq; dequant(cxi, 0, j, dq); *(cdstf + j) = dq.x; *(cdstf + j + qk/2) = dq.y; } } template static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk; if (i >= ne) { return; } char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct; const int i03 = i/(ne00 * ne01 * ne02); const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; const int i13 = i/(ne10 * ne11 * ne12); const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13; cpy_blck(cx + x_offset, cdst + dst_offset); } template static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk; if (i >= ne) { return; } char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct; const int i03 = i/(ne00 * ne01 * ne02); const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; const int x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; const int i13 = i/(ne10 * ne11 * ne12); const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13; cpy_blck(cx + x_offset, cdst + dst_offset); } // Copy destination pointers to GPU to be available when pointer indirection is in use void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream) { #if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) if (cuda_graph->dest_ptrs_size < host_dest_ptrs_size) { // (re-)allocate GPU memory for destination pointers CUDA_CHECK(cudaStreamSynchronize(stream)); if (cuda_graph->dest_ptrs_d != nullptr) { CUDA_CHECK(cudaFree(cuda_graph->dest_ptrs_d)); } CUDA_CHECK(cudaMalloc(&cuda_graph->dest_ptrs_d, host_dest_ptrs_size*sizeof(char *))); cuda_graph->dest_ptrs_size = host_dest_ptrs_size; } // copy destination pointers to GPU CUDA_CHECK(cudaMemcpyAsync(cuda_graph->dest_ptrs_d, host_dest_ptrs, host_dest_ptrs_size*sizeof(char *), cudaMemcpyHostToDevice, stream)); cuda_graph->graph_cpynode_index = 0; // reset index #else GGML_UNUSED(cuda_graph); GGML_UNUSED(host_dest_ptrs); GGML_UNUSED(host_dest_ptrs_size); GGML_UNUSED(stream); #endif } template static void ggml_cpy_flt_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; cpy_flt><<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q8_0_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK8_0 == 0); const int num_blocks = ne / QK8_0; cpy_f32_q<<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q8_0_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32<<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q4_0_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK4_0 == 0); const int num_blocks = ne / QK4_0; cpy_f32_q<<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q4_0_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK4_0><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q4_1_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK4_1 == 0); const int num_blocks = ne / QK4_1; cpy_f32_q<<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q4_1_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK4_1><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q5_0_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK5_0 == 0); const int num_blocks = ne / QK5_0; cpy_f32_q<<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q5_0_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK5_0><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q5_1_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK5_1 == 0); const int num_blocks = ne / QK5_1; cpy_f32_q<<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q5_1_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK5_1><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_iq4_nl_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK4_NL == 0); const int num_blocks = ne / QK4_NL; cpy_f32_q<<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1, bool disable_indirection_for_this_node) { const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; //GGML_ASSERT(src0->ne[3] == 1); const int64_t nb00 = src0->nb[0]; const int64_t nb01 = src0->nb[1]; const int64_t nb02 = src0->nb[2]; const int64_t nb03 = src0->nb[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; //GGML_ASSERT(src1->ne[3] == 1); const int64_t nb10 = src1->nb[0]; const int64_t nb11 = src1->nb[1]; const int64_t nb12 = src1->nb[2]; const int64_t nb13 = src1->nb[3]; cudaStream_t main_stream = ctx.stream(); char * src0_ddc = (char *) src0->data; char * src1_ddc = (char *) src1->data; char ** dest_ptrs_d = nullptr; int graph_cpynode_index = -1; #if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) { dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d; graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index; } #else GGML_UNUSED(disable_indirection_for_this_node); #endif if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) { GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1)); #ifdef GGML_USE_MUSA if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) { CUDA_CHECK(mudnnMemcpyAsync(ctx, src1, src0)); } else #endif // GGML_USE_MUSA { CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream)); } } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) { ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) { ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) { ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) { ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) { ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) { ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) { ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else { GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); } #if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) { ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index; } #else GGML_UNUSED(disable_indirection_for_this_node); #endif } void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; bool disable_indirection = true; ggml_cuda_cpy(ctx, src0, dst, disable_indirection); } void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) { if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) { return nullptr; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { return (void*) cpy_q_f32; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) { return (void*) cpy_q_f32, QK4_0>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) { return (void*) cpy_q_f32, QK4_1>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) { return (void*) cpy_q_f32, QK5_0>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) { return (void*) cpy_q_f32, QK5_1>; } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) { return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) { return (void*) cpy_flt>; } else { GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); } }