#include "reduce_rows.cuh" #include "sumrows.cuh" void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { const int id = ggml_cuda_get_device(); const int nsm = ggml_cuda_info().devices[id].nsm; const dim3 block_nums(nrows, 1, 1); if ((nrows / nsm) < 2) { const dim3 block_dims(512, 1, 1); reduce_rows_f32<<>>(x, dst, ncols); } else { const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1); reduce_rows_f32<<>>(x, dst, ncols); } } void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); const int64_t ncols = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); const dim3 block_nums(nrows, 1, 1); const int id = ggml_cuda_get_device(); const int nsm = ggml_cuda_info().devices[id].nsm; if ((nrows / nsm) < 2) { // Increase num threads to 512 for small nrows to better hide the latency const dim3 block_dims(512, 1, 1); reduce_rows_f32<<>>(src0_d, dst_d, ncols); } else { // Enough active SMs to hide latency, use smaller blocks to allow better scheduling const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1); reduce_rows_f32<<>>(src0_d, dst_d, ncols); } }