# Snapdragon-based Android devices ## How to Build The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain). This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc. This method works on Linux, macOS, and Windows. macOS and Windows users should install Docker Desktop. ``` ~/src/llama.cpp$ docker run -it -u $(id -u):$(id -g) --volume $(pwd):/workspace --platform linux/amd64 ghcr.io/snapdragon-toolchain/arm64-android:v0.3 [d]/> cd /workspace ``` The rest of the Android build process assumes that you're running inside the toolchain container. Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets: ``` [d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json . [d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon Preset CMake variables: ANDROID_ABI="arm64-v8a" ... CMAKE_TOOLCHAIN_FILE="/opt/android-ndk-r28b/build/cmake/android.toolchain.cmake" GGML_HEXAGON="ON" GGML_OPENCL="ON" GGML_OPENMP="OFF" HEXAGON_SDK_ROOT="/opt/hexagon/6.4.0.2" ... -- Including OpenCL backend -- Including Hexagon backend ... -- Build files have been written to: /workspace/build-snapdragon [d]/workspace> cmake --build build-snapdragon ... [144/356] Performing build step for 'htp-v73' [1/16] Generating htp_iface_skel.c, htp_iface_stub.c, htp_iface.h [2/16] Building C object CMakeFiles/ggml-htp-v73.dir/hvx-sigmoid.c.obj [3/16] Building C object CMakeFiles/ggml-htp-v73.dir/htp-dma.c.obj [4/16] Building C object CMakeFiles/ggml-htp-v73.dir/worker-pool.c.obj ... -- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v73.so -- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v75.so ... ``` To generate an installable "package" simply use cmake --install: ``` [d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp -- Install configuration: "Release" -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so -- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so ... -- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench -- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli ... ``` ## How to Install For this step, your device needs to be configured for on-device development. Please see https://developer.android.com/studio/debug/dev-options for details. Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device. **Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.** ``` ~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/ pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s) pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s) pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s) 102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s) ``` At this point, you should also install some models: ``` ~/src/llama.cpp$ wget https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf ... 2025-10-11 12:04:52 (10.7 MB/s) - ‘Llama-3.2-1B-Instruct-Q4_0.gguf’ saved [773025920/773025920] ~/src/llama.cpp$ adb push Llama-3.2-1B-Instruct-Q4_0.gguf /data/local/tmp/gguf Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s) ``` ## How to Run The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables. llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4). You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option. Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options. Here are some examples of running various llama.cpp tools via ADB. Simple question for Llama-3.2-1B ``` ~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?" ... ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1 ggml-hex: Hexagon Arch version v79 ggml-hex: allocating new session: HTP0 ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb4000072c7955e50 ... load_tensors: offloading output layer to GPU load_tensors: offloaded 17/17 layers to GPU load_tensors: CPU model buffer size = 225.49 MiB load_tensors: HTP0 model buffer size = 0.26 MiB load_tensors: HTP0-REPACK model buffer size = 504.00 MiB ... I hope this helps you understand the world's most popular cookies! [end of text] ... llama_perf_sampler_print: sampling time = 30.08 ms / 487 runs ( 0.06 ms per token, 16191.77 tokens per second) llama_perf_context_print: load time = 617.94 ms llama_perf_context_print: prompt eval time = 80.76 ms / 11 tokens ( 7.34 ms per token, 136.21 tokens per second) llama_perf_context_print: eval time = 9210.59 ms / 475 runs ( 19.39 ms per token, 51.57 tokens per second) llama_perf_context_print: total time = 9454.92 ms / 486 tokens llama_perf_context_print: graphs reused = 473 llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted | llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 | llama_memory_breakdown_print: | - Host | 439 = 225 + 136 + 77 | llama_memory_breakdown_print: | - HTP0-REPACK | 504 = 504 + 0 + 0 | ``` Summary request for OLMoE-1B-7B. This is a large model that requires two HTP sessions/devices ``` ~/src/llama.cpp$ M=OLMoE-1B-7B-0125-Instruct-Q4_0.gguf NDEV=2 D=HTP0,HTP1 ./scripts/snapdragon/adb/run-cli.sh -f surfing.txt -no-cnv ... ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1 ggml-hex: Hexagon Arch version v81 ggml-hex: allocating new session: HTP0 ggml-hex: allocating new session: HTP1 ... load_tensors: offloading output layer to GPU load_tensors: offloaded 17/17 layers to GPU load_tensors: CPU model buffer size = 143.86 MiB load_tensors: HTP1 model buffer size = 0.23 MiB load_tensors: HTP1-REPACK model buffer size = 1575.00 MiB load_tensors: HTP0 model buffer size = 0.28 MiB load_tensors: HTP0-REPACK model buffer size = 2025.00 MiB ... llama_context: CPU output buffer size = 0.19 MiB llama_kv_cache: HTP1 KV buffer size = 238.00 MiB llama_kv_cache: HTP0 KV buffer size = 306.00 MiB llama_kv_cache: size = 544.00 MiB ( 8192 cells, 16 layers, 1/1 seqs), K (q8_0): 272.00 MiB, V (q8_0): 272.00 MiB llama_context: HTP0 compute buffer size = 15.00 MiB llama_context: HTP1 compute buffer size = 15.00 MiB llama_context: CPU compute buffer size = 24.56 MiB ... llama_perf_context_print: prompt eval time = 1730.57 ms / 212 tokens ( 8.16 ms per token, 122.50 tokens per second) llama_perf_context_print: eval time = 5624.75 ms / 257 runs ( 21.89 ms per token, 45.69 tokens per second) llama_perf_context_print: total time = 7377.33 ms / 469 tokens llama_perf_context_print: graphs reused = 255 llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted | llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 | llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 | llama_memory_breakdown_print: | - Host | 742 = 144 + 544 + 54 | llama_memory_breakdown_print: | - HTP1-REPACK | 1575 = 1575 + 0 + 0 | llama_memory_breakdown_print: | - HTP0-REPACK | 2025 = 2025 + 0 + 0 | ``` Op test for MUL_MAT ``` ~/src/llama.cpp$ HB=0 ./scripts/snapdragon/adb/run-tool.sh test-backend-ops -b HTP0 -o MUL_MAT ... Backend 2/3: HTP0 Device description: Hexagon Device memory: 2048 MB (2048 MB free) MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=1,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=2,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=3,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK ~/src/llama.cpp-hexagon$ M=Llama-3.2-1B-Instruct-Q4_0.gguf ./scripts/snapdragon/adb/run-bench.sh -p 128 -n 64 ... ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1 ggml-hex: Hexagon Arch version v79 ggml-hex: allocating new session: HTP0 ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb400007d4b231090 | model | size | params | backend | ngl | threads | n_batch | mmap | test | t/s | | ---------------| ---------: | -----: | ---------- | --: | ------: | ------: | ---: | ----: | ------------: | | llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | pp128 | 169.42 ± 1.75 | | llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | tg64 | 51.54 ± 1.13 | build: 6a8cf8914 (6733) ``` ## Environment variables - `GGML_HEXAGON_NDEV=1` Controls the number of devices/sessions to allocate. The default is 1. Most quantized models under 4B fit into a single session; an 8B model needs two, and a 20B model needs four. - `GGML_HEXAGON_NHVX=0` Controls the number of HVX hardware threads to use. The default is all (actual number varies depending on the hardware version). - `GGML_HEXAGON_HOSTBUF=1` Controls whether the Hexagon backend allocates host buffers. By default, all buffers except for REPACK are host buffers. This option is required for testing Ops that require REPACK buffers (MUL_MAT and MUL_MAT_ID). - `GGML_HEXAGON_VERBOSE=1` Enables verbose logging of Ops from the backend. Example output: ``` ggml-hex: HTP0 graph-compute n_nodes 2 ggml-hex: HTP0 matmul : blk.27.ffn_up.weight x ffn_norm-27 -> ffn_up-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x1 ggml-hex: HTP0 matmul : blk.27.ffn_gate.weight x ffn_norm-27 -> ffn_gate-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x3 ggml-hex: HTP0 graph-compute n_nodes 1 ggml-hex: HTP0 matmul : blk.27.ffn_down.weight x ffn_gate_par-27 -> ffn_out-27 : 8192:3072 x 8192:1 -> 3072:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x0 ggml-hex: HTP0 get-tensor result_output : data 0x7592487000 offset 0 size 513024 ``` - `GGML_HEXAGON_PROFILE=1` Generates a host-side profile for the ggml-hexagon Ops. - `GGML_HEXAGON_OPMASK=0x0` Allows enabling specific stages of the processing pipeline: - `0x1` Enable Op Queue (i.e., queuing Ops into NPU) - `0x2` Enable Dynamic Quantizer (if needed for the Op) - `0x4` Enable Op Compute (MUL_MAT, etc.) Examples: `GGML_HEXAGON_OPMASK=0x1 llama-cli ...` - Ops are enqueued but NPU-side processing is stubbed out `GGML_HEXAGON_OPMASK=0x3 llama-cli ...` - NPU performs dynamic quantization and skips the rest `GGML_HEXAGON_OPMASK=0x7 llama-cli ...` - Full queuing and processing of Ops (default)