#include "httplib.h" namespace httplib { /* * Implementation that will be part of the .cc file if split into .h + .cc. */ namespace detail { bool is_hex(char c, int &v) { if (0x20 <= c && isdigit(c)) { v = c - '0'; return true; } else if ('A' <= c && c <= 'F') { v = c - 'A' + 10; return true; } else if ('a' <= c && c <= 'f') { v = c - 'a' + 10; return true; } return false; } bool from_hex_to_i(const std::string &s, size_t i, size_t cnt, int &val) { if (i >= s.size()) { return false; } val = 0; for (; cnt; i++, cnt--) { if (!s[i]) { return false; } auto v = 0; if (is_hex(s[i], v)) { val = val * 16 + v; } else { return false; } } return true; } std::string from_i_to_hex(size_t n) { static const auto charset = "0123456789abcdef"; std::string ret; do { ret = charset[n & 15] + ret; n >>= 4; } while (n > 0); return ret; } size_t to_utf8(int code, char *buff) { if (code < 0x0080) { buff[0] = static_cast(code & 0x7F); return 1; } else if (code < 0x0800) { buff[0] = static_cast(0xC0 | ((code >> 6) & 0x1F)); buff[1] = static_cast(0x80 | (code & 0x3F)); return 2; } else if (code < 0xD800) { buff[0] = static_cast(0xE0 | ((code >> 12) & 0xF)); buff[1] = static_cast(0x80 | ((code >> 6) & 0x3F)); buff[2] = static_cast(0x80 | (code & 0x3F)); return 3; } else if (code < 0xE000) { // D800 - DFFF is invalid... return 0; } else if (code < 0x10000) { buff[0] = static_cast(0xE0 | ((code >> 12) & 0xF)); buff[1] = static_cast(0x80 | ((code >> 6) & 0x3F)); buff[2] = static_cast(0x80 | (code & 0x3F)); return 3; } else if (code < 0x110000) { buff[0] = static_cast(0xF0 | ((code >> 18) & 0x7)); buff[1] = static_cast(0x80 | ((code >> 12) & 0x3F)); buff[2] = static_cast(0x80 | ((code >> 6) & 0x3F)); buff[3] = static_cast(0x80 | (code & 0x3F)); return 4; } // NOTREACHED return 0; } // NOTE: This code came up with the following stackoverflow post: // https://stackoverflow.com/questions/180947/base64-decode-snippet-in-c std::string base64_encode(const std::string &in) { static const auto lookup = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; std::string out; out.reserve(in.size()); auto val = 0; auto valb = -6; for (auto c : in) { val = (val << 8) + static_cast(c); valb += 8; while (valb >= 0) { out.push_back(lookup[(val >> valb) & 0x3F]); valb -= 6; } } if (valb > -6) { out.push_back(lookup[((val << 8) >> (valb + 8)) & 0x3F]); } while (out.size() % 4) { out.push_back('='); } return out; } bool is_valid_path(const std::string &path) { size_t level = 0; size_t i = 0; // Skip slash while (i < path.size() && path[i] == '/') { i++; } while (i < path.size()) { // Read component auto beg = i; while (i < path.size() && path[i] != '/') { if (path[i] == '\0') { return false; } else if (path[i] == '\\') { return false; } i++; } auto len = i - beg; assert(len > 0); if (!path.compare(beg, len, ".")) { ; } else if (!path.compare(beg, len, "..")) { if (level == 0) { return false; } level--; } else { level++; } // Skip slash while (i < path.size() && path[i] == '/') { i++; } } return true; } FileStat::FileStat(const std::string &path) { #if defined(_WIN32) auto wpath = u8string_to_wstring(path.c_str()); ret_ = _wstat(wpath.c_str(), &st_); #else ret_ = stat(path.c_str(), &st_); #endif } bool FileStat::is_file() const { return ret_ >= 0 && S_ISREG(st_.st_mode); } bool FileStat::is_dir() const { return ret_ >= 0 && S_ISDIR(st_.st_mode); } std::string encode_path(const std::string &s) { std::string result; result.reserve(s.size()); for (size_t i = 0; s[i]; i++) { switch (s[i]) { case ' ': result += "%20"; break; case '+': result += "%2B"; break; case '\r': result += "%0D"; break; case '\n': result += "%0A"; break; case '\'': result += "%27"; break; case ',': result += "%2C"; break; // case ':': result += "%3A"; break; // ok? probably... case ';': result += "%3B"; break; default: auto c = static_cast(s[i]); if (c >= 0x80) { result += '%'; char hex[4]; auto len = snprintf(hex, sizeof(hex) - 1, "%02X", c); assert(len == 2); result.append(hex, static_cast(len)); } else { result += s[i]; } break; } } return result; } std::string file_extension(const std::string &path) { std::smatch m; thread_local auto re = std::regex("\\.([a-zA-Z0-9]+)$"); if (std::regex_search(path, m, re)) { return m[1].str(); } return std::string(); } bool is_space_or_tab(char c) { return c == ' ' || c == '\t'; } std::pair trim(const char *b, const char *e, size_t left, size_t right) { while (b + left < e && is_space_or_tab(b[left])) { left++; } while (right > 0 && is_space_or_tab(b[right - 1])) { right--; } return std::make_pair(left, right); } std::string trim_copy(const std::string &s) { auto r = trim(s.data(), s.data() + s.size(), 0, s.size()); return s.substr(r.first, r.second - r.first); } std::string trim_double_quotes_copy(const std::string &s) { if (s.length() >= 2 && s.front() == '"' && s.back() == '"') { return s.substr(1, s.size() - 2); } return s; } void divide(const char *data, std::size_t size, char d, std::function fn) { const auto it = std::find(data, data + size, d); const auto found = static_cast(it != data + size); const auto lhs_data = data; const auto lhs_size = static_cast(it - data); const auto rhs_data = it + found; const auto rhs_size = size - lhs_size - found; fn(lhs_data, lhs_size, rhs_data, rhs_size); } void divide(const std::string &str, char d, std::function fn) { divide(str.data(), str.size(), d, std::move(fn)); } void split(const char *b, const char *e, char d, std::function fn) { return split(b, e, d, (std::numeric_limits::max)(), std::move(fn)); } void split(const char *b, const char *e, char d, size_t m, std::function fn) { size_t i = 0; size_t beg = 0; size_t count = 1; while (e ? (b + i < e) : (b[i] != '\0')) { if (b[i] == d && count < m) { auto r = trim(b, e, beg, i); if (r.first < r.second) { fn(&b[r.first], &b[r.second]); } beg = i + 1; count++; } i++; } if (i) { auto r = trim(b, e, beg, i); if (r.first < r.second) { fn(&b[r.first], &b[r.second]); } } } stream_line_reader::stream_line_reader(Stream &strm, char *fixed_buffer, size_t fixed_buffer_size) : strm_(strm), fixed_buffer_(fixed_buffer), fixed_buffer_size_(fixed_buffer_size) {} const char *stream_line_reader::ptr() const { if (growable_buffer_.empty()) { return fixed_buffer_; } else { return growable_buffer_.data(); } } size_t stream_line_reader::size() const { if (growable_buffer_.empty()) { return fixed_buffer_used_size_; } else { return growable_buffer_.size(); } } bool stream_line_reader::end_with_crlf() const { auto end = ptr() + size(); return size() >= 2 && end[-2] == '\r' && end[-1] == '\n'; } bool stream_line_reader::getline() { fixed_buffer_used_size_ = 0; growable_buffer_.clear(); #ifndef CPPHTTPLIB_ALLOW_LF_AS_LINE_TERMINATOR char prev_byte = 0; #endif for (size_t i = 0;; i++) { if (size() >= CPPHTTPLIB_MAX_LINE_LENGTH) { // Treat exceptionally long lines as an error to // prevent infinite loops/memory exhaustion return false; } char byte; auto n = strm_.read(&byte, 1); if (n < 0) { return false; } else if (n == 0) { if (i == 0) { return false; } else { break; } } append(byte); #ifdef CPPHTTPLIB_ALLOW_LF_AS_LINE_TERMINATOR if (byte == '\n') { break; } #else if (prev_byte == '\r' && byte == '\n') { break; } prev_byte = byte; #endif } return true; } void stream_line_reader::append(char c) { if (fixed_buffer_used_size_ < fixed_buffer_size_ - 1) { fixed_buffer_[fixed_buffer_used_size_++] = c; fixed_buffer_[fixed_buffer_used_size_] = '\0'; } else { if (growable_buffer_.empty()) { assert(fixed_buffer_[fixed_buffer_used_size_] == '\0'); growable_buffer_.assign(fixed_buffer_, fixed_buffer_used_size_); } growable_buffer_ += c; } } mmap::mmap(const char *path) { open(path); } mmap::~mmap() { close(); } bool mmap::open(const char *path) { close(); #if defined(_WIN32) auto wpath = u8string_to_wstring(path); if (wpath.empty()) { return false; } hFile_ = ::CreateFile2(wpath.c_str(), GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING, NULL); if (hFile_ == INVALID_HANDLE_VALUE) { return false; } LARGE_INTEGER size{}; if (!::GetFileSizeEx(hFile_, &size)) { return false; } // If the following line doesn't compile due to QuadPart, update Windows SDK. // See: // https://github.com/yhirose/cpp-httplib/issues/1903#issuecomment-2316520721 if (static_cast(size.QuadPart) > (std::numeric_limits::max)()) { // `size_t` might be 32-bits, on 32-bits Windows. return false; } size_ = static_cast(size.QuadPart); hMapping_ = ::CreateFileMappingFromApp(hFile_, NULL, PAGE_READONLY, size_, NULL); // Special treatment for an empty file... if (hMapping_ == NULL && size_ == 0) { close(); is_open_empty_file = true; return true; } if (hMapping_ == NULL) { close(); return false; } addr_ = ::MapViewOfFileFromApp(hMapping_, FILE_MAP_READ, 0, 0); if (addr_ == nullptr) { close(); return false; } #else fd_ = ::open(path, O_RDONLY); if (fd_ == -1) { return false; } struct stat sb; if (fstat(fd_, &sb) == -1) { close(); return false; } size_ = static_cast(sb.st_size); addr_ = ::mmap(NULL, size_, PROT_READ, MAP_PRIVATE, fd_, 0); // Special treatment for an empty file... if (addr_ == MAP_FAILED && size_ == 0) { close(); is_open_empty_file = true; return false; } #endif return true; } bool mmap::is_open() const { return is_open_empty_file ? true : addr_ != nullptr; } size_t mmap::size() const { return size_; } const char *mmap::data() const { return is_open_empty_file ? "" : static_cast(addr_); } void mmap::close() { #if defined(_WIN32) if (addr_) { ::UnmapViewOfFile(addr_); addr_ = nullptr; } if (hMapping_) { ::CloseHandle(hMapping_); hMapping_ = NULL; } if (hFile_ != INVALID_HANDLE_VALUE) { ::CloseHandle(hFile_); hFile_ = INVALID_HANDLE_VALUE; } is_open_empty_file = false; #else if (addr_ != nullptr) { munmap(addr_, size_); addr_ = nullptr; } if (fd_ != -1) { ::close(fd_); fd_ = -1; } #endif size_ = 0; } int close_socket(socket_t sock) { #ifdef _WIN32 return closesocket(sock); #else return close(sock); #endif } template inline ssize_t handle_EINTR(T fn) { ssize_t res = 0; while (true) { res = fn(); if (res < 0 && errno == EINTR) { std::this_thread::sleep_for(std::chrono::microseconds{1}); continue; } break; } return res; } ssize_t read_socket(socket_t sock, void *ptr, size_t size, int flags) { return handle_EINTR([&]() { return recv(sock, #ifdef _WIN32 static_cast(ptr), static_cast(size), #else ptr, size, #endif flags); }); } ssize_t send_socket(socket_t sock, const void *ptr, size_t size, int flags) { return handle_EINTR([&]() { return send(sock, #ifdef _WIN32 static_cast(ptr), static_cast(size), #else ptr, size, #endif flags); }); } int poll_wrapper(struct pollfd *fds, nfds_t nfds, int timeout) { #ifdef _WIN32 return ::WSAPoll(fds, nfds, timeout); #else return ::poll(fds, nfds, timeout); #endif } template ssize_t select_impl(socket_t sock, time_t sec, time_t usec) { #ifdef __APPLE__ if (sock >= FD_SETSIZE) { return -1; } fd_set fds, *rfds, *wfds; FD_ZERO(&fds); FD_SET(sock, &fds); rfds = (Read ? &fds : nullptr); wfds = (Read ? nullptr : &fds); timeval tv; tv.tv_sec = static_cast(sec); tv.tv_usec = static_cast(usec); return handle_EINTR([&]() { return select(static_cast(sock + 1), rfds, wfds, nullptr, &tv); }); #else struct pollfd pfd; pfd.fd = sock; pfd.events = (Read ? POLLIN : POLLOUT); auto timeout = static_cast(sec * 1000 + usec / 1000); return handle_EINTR([&]() { return poll_wrapper(&pfd, 1, timeout); }); #endif } ssize_t select_read(socket_t sock, time_t sec, time_t usec) { return select_impl(sock, sec, usec); } ssize_t select_write(socket_t sock, time_t sec, time_t usec) { return select_impl(sock, sec, usec); } Error wait_until_socket_is_ready(socket_t sock, time_t sec, time_t usec) { #ifdef __APPLE__ if (sock >= FD_SETSIZE) { return Error::Connection; } fd_set fdsr, fdsw; FD_ZERO(&fdsr); FD_ZERO(&fdsw); FD_SET(sock, &fdsr); FD_SET(sock, &fdsw); timeval tv; tv.tv_sec = static_cast(sec); tv.tv_usec = static_cast(usec); auto ret = handle_EINTR([&]() { return select(static_cast(sock + 1), &fdsr, &fdsw, nullptr, &tv); }); if (ret == 0) { return Error::ConnectionTimeout; } if (ret > 0 && (FD_ISSET(sock, &fdsr) || FD_ISSET(sock, &fdsw))) { auto error = 0; socklen_t len = sizeof(error); auto res = getsockopt(sock, SOL_SOCKET, SO_ERROR, reinterpret_cast(&error), &len); auto successful = res >= 0 && !error; return successful ? Error::Success : Error::Connection; } return Error::Connection; #else struct pollfd pfd_read; pfd_read.fd = sock; pfd_read.events = POLLIN | POLLOUT; auto timeout = static_cast(sec * 1000 + usec / 1000); auto poll_res = handle_EINTR([&]() { return poll_wrapper(&pfd_read, 1, timeout); }); if (poll_res == 0) { return Error::ConnectionTimeout; } if (poll_res > 0 && pfd_read.revents & (POLLIN | POLLOUT)) { auto error = 0; socklen_t len = sizeof(error); auto res = getsockopt(sock, SOL_SOCKET, SO_ERROR, reinterpret_cast(&error), &len); auto successful = res >= 0 && !error; return successful ? Error::Success : Error::Connection; } return Error::Connection; #endif } bool is_socket_alive(socket_t sock) { const auto val = detail::select_read(sock, 0, 0); if (val == 0) { return true; } else if (val < 0 && errno == EBADF) { return false; } char buf[1]; return detail::read_socket(sock, &buf[0], sizeof(buf), MSG_PEEK) > 0; } class SocketStream final : public Stream { public: SocketStream(socket_t sock, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, time_t max_timeout_msec = 0, std::chrono::time_point start_time = (std::chrono::steady_clock::time_point::min)()); ~SocketStream() override; bool is_readable() const override; bool wait_readable() const override; bool wait_writable() const override; ssize_t read(char *ptr, size_t size) override; ssize_t write(const char *ptr, size_t size) override; void get_remote_ip_and_port(std::string &ip, int &port) const override; void get_local_ip_and_port(std::string &ip, int &port) const override; socket_t socket() const override; time_t duration() const override; private: socket_t sock_; time_t read_timeout_sec_; time_t read_timeout_usec_; time_t write_timeout_sec_; time_t write_timeout_usec_; time_t max_timeout_msec_; const std::chrono::time_point start_time_; std::vector read_buff_; size_t read_buff_off_ = 0; size_t read_buff_content_size_ = 0; static const size_t read_buff_size_ = 1024l * 4; }; #ifdef CPPHTTPLIB_OPENSSL_SUPPORT class SSLSocketStream final : public Stream { public: SSLSocketStream( socket_t sock, SSL *ssl, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, time_t max_timeout_msec = 0, std::chrono::time_point start_time = (std::chrono::steady_clock::time_point::min)()); ~SSLSocketStream() override; bool is_readable() const override; bool wait_readable() const override; bool wait_writable() const override; ssize_t read(char *ptr, size_t size) override; ssize_t write(const char *ptr, size_t size) override; void get_remote_ip_and_port(std::string &ip, int &port) const override; void get_local_ip_and_port(std::string &ip, int &port) const override; socket_t socket() const override; time_t duration() const override; private: socket_t sock_; SSL *ssl_; time_t read_timeout_sec_; time_t read_timeout_usec_; time_t write_timeout_sec_; time_t write_timeout_usec_; time_t max_timeout_msec_; const std::chrono::time_point start_time_; }; #endif bool keep_alive(const std::atomic &svr_sock, socket_t sock, time_t keep_alive_timeout_sec) { using namespace std::chrono; const auto interval_usec = CPPHTTPLIB_KEEPALIVE_TIMEOUT_CHECK_INTERVAL_USECOND; // Avoid expensive `steady_clock::now()` call for the first time if (select_read(sock, 0, interval_usec) > 0) { return true; } const auto start = steady_clock::now() - microseconds{interval_usec}; const auto timeout = seconds{keep_alive_timeout_sec}; while (true) { if (svr_sock == INVALID_SOCKET) { break; // Server socket is closed } auto val = select_read(sock, 0, interval_usec); if (val < 0) { break; // Ssocket error } else if (val == 0) { if (steady_clock::now() - start > timeout) { break; // Timeout } } else { return true; // Ready for read } } return false; } template bool process_server_socket_core(const std::atomic &svr_sock, socket_t sock, size_t keep_alive_max_count, time_t keep_alive_timeout_sec, T callback) { assert(keep_alive_max_count > 0); auto ret = false; auto count = keep_alive_max_count; while (count > 0 && keep_alive(svr_sock, sock, keep_alive_timeout_sec)) { auto close_connection = count == 1; auto connection_closed = false; ret = callback(close_connection, connection_closed); if (!ret || connection_closed) { break; } count--; } return ret; } template bool process_server_socket(const std::atomic &svr_sock, socket_t sock, size_t keep_alive_max_count, time_t keep_alive_timeout_sec, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, T callback) { return process_server_socket_core( svr_sock, sock, keep_alive_max_count, keep_alive_timeout_sec, [&](bool close_connection, bool &connection_closed) { SocketStream strm(sock, read_timeout_sec, read_timeout_usec, write_timeout_sec, write_timeout_usec); return callback(strm, close_connection, connection_closed); }); } bool process_client_socket( socket_t sock, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, time_t max_timeout_msec, std::chrono::time_point start_time, std::function callback) { SocketStream strm(sock, read_timeout_sec, read_timeout_usec, write_timeout_sec, write_timeout_usec, max_timeout_msec, start_time); return callback(strm); } int shutdown_socket(socket_t sock) { #ifdef _WIN32 return shutdown(sock, SD_BOTH); #else return shutdown(sock, SHUT_RDWR); #endif } std::string escape_abstract_namespace_unix_domain(const std::string &s) { if (s.size() > 1 && s[0] == '\0') { auto ret = s; ret[0] = '@'; return ret; } return s; } std::string unescape_abstract_namespace_unix_domain(const std::string &s) { if (s.size() > 1 && s[0] == '@') { auto ret = s; ret[0] = '\0'; return ret; } return s; } int getaddrinfo_with_timeout(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res, time_t timeout_sec) { #ifdef CPPHTTPLIB_USE_NON_BLOCKING_GETADDRINFO if (timeout_sec <= 0) { // No timeout specified, use standard getaddrinfo return getaddrinfo(node, service, hints, res); } #ifdef _WIN32 // Windows-specific implementation using GetAddrInfoEx with overlapped I/O OVERLAPPED overlapped = {0}; HANDLE event = CreateEventW(nullptr, TRUE, FALSE, nullptr); if (!event) { return EAI_FAIL; } overlapped.hEvent = event; PADDRINFOEXW result_addrinfo = nullptr; HANDLE cancel_handle = nullptr; ADDRINFOEXW hints_ex = {0}; if (hints) { hints_ex.ai_flags = hints->ai_flags; hints_ex.ai_family = hints->ai_family; hints_ex.ai_socktype = hints->ai_socktype; hints_ex.ai_protocol = hints->ai_protocol; } auto wnode = u8string_to_wstring(node); auto wservice = u8string_to_wstring(service); auto ret = ::GetAddrInfoExW(wnode.data(), wservice.data(), NS_DNS, nullptr, hints ? &hints_ex : nullptr, &result_addrinfo, nullptr, &overlapped, nullptr, &cancel_handle); if (ret == WSA_IO_PENDING) { auto wait_result = ::WaitForSingleObject(event, static_cast(timeout_sec * 1000)); if (wait_result == WAIT_TIMEOUT) { if (cancel_handle) { ::GetAddrInfoExCancel(&cancel_handle); } ::CloseHandle(event); return EAI_AGAIN; } DWORD bytes_returned; if (!::GetOverlappedResult((HANDLE)INVALID_SOCKET, &overlapped, &bytes_returned, FALSE)) { ::CloseHandle(event); return ::WSAGetLastError(); } } ::CloseHandle(event); if (ret == NO_ERROR || ret == WSA_IO_PENDING) { *res = reinterpret_cast(result_addrinfo); return 0; } return ret; #elif TARGET_OS_MAC // macOS implementation using CFHost API for asynchronous DNS resolution CFStringRef hostname_ref = CFStringCreateWithCString( kCFAllocatorDefault, node, kCFStringEncodingUTF8); if (!hostname_ref) { return EAI_MEMORY; } CFHostRef host_ref = CFHostCreateWithName(kCFAllocatorDefault, hostname_ref); CFRelease(hostname_ref); if (!host_ref) { return EAI_MEMORY; } // Set up context for callback struct CFHostContext { bool completed = false; bool success = false; CFArrayRef addresses = nullptr; std::mutex mutex; std::condition_variable cv; } context; CFHostClientContext client_context; memset(&client_context, 0, sizeof(client_context)); client_context.info = &context; // Set callback auto callback = [](CFHostRef theHost, CFHostInfoType /*typeInfo*/, const CFStreamError *error, void *info) { auto ctx = static_cast(info); std::lock_guard lock(ctx->mutex); if (error && error->error != 0) { ctx->success = false; } else { Boolean hasBeenResolved; ctx->addresses = CFHostGetAddressing(theHost, &hasBeenResolved); if (ctx->addresses && hasBeenResolved) { CFRetain(ctx->addresses); ctx->success = true; } else { ctx->success = false; } } ctx->completed = true; ctx->cv.notify_one(); }; if (!CFHostSetClient(host_ref, callback, &client_context)) { CFRelease(host_ref); return EAI_SYSTEM; } // Schedule on run loop CFRunLoopRef run_loop = CFRunLoopGetCurrent(); CFHostScheduleWithRunLoop(host_ref, run_loop, kCFRunLoopDefaultMode); // Start resolution CFStreamError stream_error; if (!CFHostStartInfoResolution(host_ref, kCFHostAddresses, &stream_error)) { CFHostUnscheduleFromRunLoop(host_ref, run_loop, kCFRunLoopDefaultMode); CFRelease(host_ref); return EAI_FAIL; } // Wait for completion with timeout auto timeout_time = std::chrono::steady_clock::now() + std::chrono::seconds(timeout_sec); bool timed_out = false; { std::unique_lock lock(context.mutex); while (!context.completed) { auto now = std::chrono::steady_clock::now(); if (now >= timeout_time) { timed_out = true; break; } // Run the runloop for a short time lock.unlock(); CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0.1, true); lock.lock(); } } // Clean up CFHostUnscheduleFromRunLoop(host_ref, run_loop, kCFRunLoopDefaultMode); CFHostSetClient(host_ref, nullptr, nullptr); if (timed_out || !context.completed) { CFHostCancelInfoResolution(host_ref, kCFHostAddresses); CFRelease(host_ref); return EAI_AGAIN; } if (!context.success || !context.addresses) { CFRelease(host_ref); return EAI_NODATA; } // Convert CFArray to addrinfo CFIndex count = CFArrayGetCount(context.addresses); if (count == 0) { CFRelease(context.addresses); CFRelease(host_ref); return EAI_NODATA; } struct addrinfo *result_addrinfo = nullptr; struct addrinfo **current = &result_addrinfo; for (CFIndex i = 0; i < count; i++) { CFDataRef addr_data = static_cast(CFArrayGetValueAtIndex(context.addresses, i)); if (!addr_data) continue; const struct sockaddr *sockaddr_ptr = reinterpret_cast(CFDataGetBytePtr(addr_data)); socklen_t sockaddr_len = static_cast(CFDataGetLength(addr_data)); // Allocate addrinfo structure *current = static_cast(malloc(sizeof(struct addrinfo))); if (!*current) { freeaddrinfo(result_addrinfo); CFRelease(context.addresses); CFRelease(host_ref); return EAI_MEMORY; } memset(*current, 0, sizeof(struct addrinfo)); // Set up addrinfo fields (*current)->ai_family = sockaddr_ptr->sa_family; (*current)->ai_socktype = hints ? hints->ai_socktype : SOCK_STREAM; (*current)->ai_protocol = hints ? hints->ai_protocol : IPPROTO_TCP; (*current)->ai_addrlen = sockaddr_len; // Copy sockaddr (*current)->ai_addr = static_cast(malloc(sockaddr_len)); if (!(*current)->ai_addr) { freeaddrinfo(result_addrinfo); CFRelease(context.addresses); CFRelease(host_ref); return EAI_MEMORY; } memcpy((*current)->ai_addr, sockaddr_ptr, sockaddr_len); // Set port if service is specified if (service && strlen(service) > 0) { int port = atoi(service); if (port > 0) { if (sockaddr_ptr->sa_family == AF_INET) { reinterpret_cast((*current)->ai_addr) ->sin_port = htons(static_cast(port)); } else if (sockaddr_ptr->sa_family == AF_INET6) { reinterpret_cast((*current)->ai_addr) ->sin6_port = htons(static_cast(port)); } } } current = &((*current)->ai_next); } CFRelease(context.addresses); CFRelease(host_ref); *res = result_addrinfo; return 0; #elif defined(_GNU_SOURCE) && defined(__GLIBC__) && \ (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 2)) // Linux implementation using getaddrinfo_a for asynchronous DNS resolution struct gaicb request; struct gaicb *requests[1] = {&request}; struct sigevent sevp; struct timespec timeout; // Initialize the request structure memset(&request, 0, sizeof(request)); request.ar_name = node; request.ar_service = service; request.ar_request = hints; // Set up timeout timeout.tv_sec = timeout_sec; timeout.tv_nsec = 0; // Initialize sigevent structure (not used, but required) memset(&sevp, 0, sizeof(sevp)); sevp.sigev_notify = SIGEV_NONE; // Start asynchronous resolution int start_result = getaddrinfo_a(GAI_NOWAIT, requests, 1, &sevp); if (start_result != 0) { return start_result; } // Wait for completion with timeout int wait_result = gai_suspend((const struct gaicb *const *)requests, 1, &timeout); if (wait_result == 0 || wait_result == EAI_ALLDONE) { // Completed successfully, get the result int gai_result = gai_error(&request); if (gai_result == 0) { *res = request.ar_result; return 0; } else { // Clean up on error if (request.ar_result) { freeaddrinfo(request.ar_result); } return gai_result; } } else if (wait_result == EAI_AGAIN) { // Timeout occurred, cancel the request gai_cancel(&request); return EAI_AGAIN; } else { // Other error occurred gai_cancel(&request); return wait_result; } #else // Fallback implementation using thread-based timeout for other Unix systems struct GetAddrInfoState { std::mutex mutex; std::condition_variable result_cv; bool completed = false; int result = EAI_SYSTEM; std::string node = node; std::string service = service; struct addrinfo hints = hints; struct addrinfo *info = nullptr; }; // Allocate on the heap, so the resolver thread can keep using the data. auto state = std::make_shared(); std::thread resolve_thread([=]() { auto thread_result = getaddrinfo( state->node.c_str(), state->service.c_str(), hints, &state->info); std::lock_guard lock(state->mutex); state->result = thread_result; state->completed = true; state->result_cv.notify_one(); }); // Wait for completion or timeout std::unique_lock lock(state->mutex); auto finished = state->result_cv.wait_for(lock, std::chrono::seconds(timeout_sec), [&] { return state->completed; }); if (finished) { // Operation completed within timeout resolve_thread.join(); *res = state->info; return state->result; } else { // Timeout occurred resolve_thread.detach(); // Let the thread finish in background return EAI_AGAIN; // Return timeout error } #endif #else (void)(timeout_sec); // Unused parameter for non-blocking getaddrinfo return getaddrinfo(node, service, hints, res); #endif } template socket_t create_socket(const std::string &host, const std::string &ip, int port, int address_family, int socket_flags, bool tcp_nodelay, bool ipv6_v6only, SocketOptions socket_options, BindOrConnect bind_or_connect, time_t timeout_sec = 0) { // Get address info const char *node = nullptr; struct addrinfo hints; struct addrinfo *result; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_IP; if (!ip.empty()) { node = ip.c_str(); // Ask getaddrinfo to convert IP in c-string to address hints.ai_family = AF_UNSPEC; hints.ai_flags = AI_NUMERICHOST; } else { if (!host.empty()) { node = host.c_str(); } hints.ai_family = address_family; hints.ai_flags = socket_flags; } #if !defined(_WIN32) || defined(CPPHTTPLIB_HAVE_AFUNIX_H) if (hints.ai_family == AF_UNIX) { const auto addrlen = host.length(); if (addrlen > sizeof(sockaddr_un::sun_path)) { return INVALID_SOCKET; } #ifdef SOCK_CLOEXEC auto sock = socket(hints.ai_family, hints.ai_socktype | SOCK_CLOEXEC, hints.ai_protocol); #else auto sock = socket(hints.ai_family, hints.ai_socktype, hints.ai_protocol); #endif if (sock != INVALID_SOCKET) { sockaddr_un addr{}; addr.sun_family = AF_UNIX; auto unescaped_host = unescape_abstract_namespace_unix_domain(host); std::copy(unescaped_host.begin(), unescaped_host.end(), addr.sun_path); hints.ai_addr = reinterpret_cast(&addr); hints.ai_addrlen = static_cast( sizeof(addr) - sizeof(addr.sun_path) + addrlen); #ifndef SOCK_CLOEXEC #ifndef _WIN32 fcntl(sock, F_SETFD, FD_CLOEXEC); #endif #endif if (socket_options) { socket_options(sock); } #ifdef _WIN32 // Setting SO_REUSEADDR seems not to work well with AF_UNIX on windows, so // remove the option. detail::set_socket_opt(sock, SOL_SOCKET, SO_REUSEADDR, 0); #endif bool dummy; if (!bind_or_connect(sock, hints, dummy)) { close_socket(sock); sock = INVALID_SOCKET; } } return sock; } #endif auto service = std::to_string(port); if (getaddrinfo_with_timeout(node, service.c_str(), &hints, &result, timeout_sec)) { #if defined __linux__ && !defined __ANDROID__ res_init(); #endif return INVALID_SOCKET; } auto se = detail::scope_exit([&] { freeaddrinfo(result); }); for (auto rp = result; rp; rp = rp->ai_next) { // Create a socket #ifdef _WIN32 auto sock = WSASocketW(rp->ai_family, rp->ai_socktype, rp->ai_protocol, nullptr, 0, WSA_FLAG_NO_HANDLE_INHERIT | WSA_FLAG_OVERLAPPED); /** * Since the WSA_FLAG_NO_HANDLE_INHERIT is only supported on Windows 7 SP1 * and above the socket creation fails on older Windows Systems. * * Let's try to create a socket the old way in this case. * * Reference: * https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsasocketa * * WSA_FLAG_NO_HANDLE_INHERIT: * This flag is supported on Windows 7 with SP1, Windows Server 2008 R2 with * SP1, and later * */ if (sock == INVALID_SOCKET) { sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); } #else #ifdef SOCK_CLOEXEC auto sock = socket(rp->ai_family, rp->ai_socktype | SOCK_CLOEXEC, rp->ai_protocol); #else auto sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); #endif #endif if (sock == INVALID_SOCKET) { continue; } #if !defined _WIN32 && !defined SOCK_CLOEXEC if (fcntl(sock, F_SETFD, FD_CLOEXEC) == -1) { close_socket(sock); continue; } #endif if (tcp_nodelay) { set_socket_opt(sock, IPPROTO_TCP, TCP_NODELAY, 1); } if (rp->ai_family == AF_INET6) { set_socket_opt(sock, IPPROTO_IPV6, IPV6_V6ONLY, ipv6_v6only ? 1 : 0); } if (socket_options) { socket_options(sock); } // bind or connect auto quit = false; if (bind_or_connect(sock, *rp, quit)) { return sock; } close_socket(sock); if (quit) { break; } } return INVALID_SOCKET; } void set_nonblocking(socket_t sock, bool nonblocking) { #ifdef _WIN32 auto flags = nonblocking ? 1UL : 0UL; ioctlsocket(sock, FIONBIO, &flags); #else auto flags = fcntl(sock, F_GETFL, 0); fcntl(sock, F_SETFL, nonblocking ? (flags | O_NONBLOCK) : (flags & (~O_NONBLOCK))); #endif } bool is_connection_error() { #ifdef _WIN32 return WSAGetLastError() != WSAEWOULDBLOCK; #else return errno != EINPROGRESS; #endif } bool bind_ip_address(socket_t sock, const std::string &host) { struct addrinfo hints; struct addrinfo *result; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; if (getaddrinfo_with_timeout(host.c_str(), "0", &hints, &result, 0)) { return false; } auto se = detail::scope_exit([&] { freeaddrinfo(result); }); auto ret = false; for (auto rp = result; rp; rp = rp->ai_next) { const auto &ai = *rp; if (!::bind(sock, ai.ai_addr, static_cast(ai.ai_addrlen))) { ret = true; break; } } return ret; } #if !defined _WIN32 && !defined ANDROID && !defined _AIX && !defined __MVS__ #define USE_IF2IP #endif #ifdef USE_IF2IP std::string if2ip(int address_family, const std::string &ifn) { struct ifaddrs *ifap; getifaddrs(&ifap); auto se = detail::scope_exit([&] { freeifaddrs(ifap); }); std::string addr_candidate; for (auto ifa = ifap; ifa; ifa = ifa->ifa_next) { if (ifa->ifa_addr && ifn == ifa->ifa_name && (AF_UNSPEC == address_family || ifa->ifa_addr->sa_family == address_family)) { if (ifa->ifa_addr->sa_family == AF_INET) { auto sa = reinterpret_cast(ifa->ifa_addr); char buf[INET_ADDRSTRLEN]; if (inet_ntop(AF_INET, &sa->sin_addr, buf, INET_ADDRSTRLEN)) { return std::string(buf, INET_ADDRSTRLEN); } } else if (ifa->ifa_addr->sa_family == AF_INET6) { auto sa = reinterpret_cast(ifa->ifa_addr); if (!IN6_IS_ADDR_LINKLOCAL(&sa->sin6_addr)) { char buf[INET6_ADDRSTRLEN] = {}; if (inet_ntop(AF_INET6, &sa->sin6_addr, buf, INET6_ADDRSTRLEN)) { // equivalent to mac's IN6_IS_ADDR_UNIQUE_LOCAL auto s6_addr_head = sa->sin6_addr.s6_addr[0]; if (s6_addr_head == 0xfc || s6_addr_head == 0xfd) { addr_candidate = std::string(buf, INET6_ADDRSTRLEN); } else { return std::string(buf, INET6_ADDRSTRLEN); } } } } } } return addr_candidate; } #endif socket_t create_client_socket( const std::string &host, const std::string &ip, int port, int address_family, bool tcp_nodelay, bool ipv6_v6only, SocketOptions socket_options, time_t connection_timeout_sec, time_t connection_timeout_usec, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, const std::string &intf, Error &error) { auto sock = create_socket( host, ip, port, address_family, 0, tcp_nodelay, ipv6_v6only, std::move(socket_options), [&](socket_t sock2, struct addrinfo &ai, bool &quit) -> bool { if (!intf.empty()) { #ifdef USE_IF2IP auto ip_from_if = if2ip(address_family, intf); if (ip_from_if.empty()) { ip_from_if = intf; } if (!bind_ip_address(sock2, ip_from_if)) { error = Error::BindIPAddress; return false; } #endif } set_nonblocking(sock2, true); auto ret = ::connect(sock2, ai.ai_addr, static_cast(ai.ai_addrlen)); if (ret < 0) { if (is_connection_error()) { error = Error::Connection; return false; } error = wait_until_socket_is_ready(sock2, connection_timeout_sec, connection_timeout_usec); if (error != Error::Success) { if (error == Error::ConnectionTimeout) { quit = true; } return false; } } set_nonblocking(sock2, false); set_socket_opt_time(sock2, SOL_SOCKET, SO_RCVTIMEO, read_timeout_sec, read_timeout_usec); set_socket_opt_time(sock2, SOL_SOCKET, SO_SNDTIMEO, write_timeout_sec, write_timeout_usec); error = Error::Success; return true; }, connection_timeout_sec); // Pass DNS timeout if (sock != INVALID_SOCKET) { error = Error::Success; } else { if (error == Error::Success) { error = Error::Connection; } } return sock; } bool get_ip_and_port(const struct sockaddr_storage &addr, socklen_t addr_len, std::string &ip, int &port) { if (addr.ss_family == AF_INET) { port = ntohs(reinterpret_cast(&addr)->sin_port); } else if (addr.ss_family == AF_INET6) { port = ntohs(reinterpret_cast(&addr)->sin6_port); } else { return false; } std::array ipstr{}; if (getnameinfo(reinterpret_cast(&addr), addr_len, ipstr.data(), static_cast(ipstr.size()), nullptr, 0, NI_NUMERICHOST)) { return false; } ip = ipstr.data(); return true; } void get_local_ip_and_port(socket_t sock, std::string &ip, int &port) { struct sockaddr_storage addr; socklen_t addr_len = sizeof(addr); if (!getsockname(sock, reinterpret_cast(&addr), &addr_len)) { get_ip_and_port(addr, addr_len, ip, port); } } void get_remote_ip_and_port(socket_t sock, std::string &ip, int &port) { struct sockaddr_storage addr; socklen_t addr_len = sizeof(addr); if (!getpeername(sock, reinterpret_cast(&addr), &addr_len)) { #ifndef _WIN32 if (addr.ss_family == AF_UNIX) { #if defined(__linux__) struct ucred ucred; socklen_t len = sizeof(ucred); if (getsockopt(sock, SOL_SOCKET, SO_PEERCRED, &ucred, &len) == 0) { port = ucred.pid; } #elif defined(SOL_LOCAL) && defined(SO_PEERPID) pid_t pid; socklen_t len = sizeof(pid); if (getsockopt(sock, SOL_LOCAL, SO_PEERPID, &pid, &len) == 0) { port = pid; } #endif return; } #endif get_ip_and_port(addr, addr_len, ip, port); } } constexpr unsigned int str2tag_core(const char *s, size_t l, unsigned int h) { return (l == 0) ? h : str2tag_core( s + 1, l - 1, // Unsets the 6 high bits of h, therefore no overflow happens (((std::numeric_limits::max)() >> 6) & h * 33) ^ static_cast(*s)); } unsigned int str2tag(const std::string &s) { return str2tag_core(s.data(), s.size(), 0); } namespace udl { constexpr unsigned int operator""_t(const char *s, size_t l) { return str2tag_core(s, l, 0); } } // namespace udl std::string find_content_type(const std::string &path, const std::map &user_data, const std::string &default_content_type) { auto ext = file_extension(path); auto it = user_data.find(ext); if (it != user_data.end()) { return it->second; } using udl::operator""_t; switch (str2tag(ext)) { default: return default_content_type; case "css"_t: return "text/css"; case "csv"_t: return "text/csv"; case "htm"_t: case "html"_t: return "text/html"; case "js"_t: case "mjs"_t: return "text/javascript"; case "txt"_t: return "text/plain"; case "vtt"_t: return "text/vtt"; case "apng"_t: return "image/apng"; case "avif"_t: return "image/avif"; case "bmp"_t: return "image/bmp"; case "gif"_t: return "image/gif"; case "png"_t: return "image/png"; case "svg"_t: return "image/svg+xml"; case "webp"_t: return "image/webp"; case "ico"_t: return "image/x-icon"; case "tif"_t: return "image/tiff"; case "tiff"_t: return "image/tiff"; case "jpg"_t: case "jpeg"_t: return "image/jpeg"; case "mp4"_t: return "video/mp4"; case "mpeg"_t: return "video/mpeg"; case "webm"_t: return "video/webm"; case "mp3"_t: return "audio/mp3"; case "mpga"_t: return "audio/mpeg"; case "weba"_t: return "audio/webm"; case "wav"_t: return "audio/wave"; case "otf"_t: return "font/otf"; case "ttf"_t: return "font/ttf"; case "woff"_t: return "font/woff"; case "woff2"_t: return "font/woff2"; case "7z"_t: return "application/x-7z-compressed"; case "atom"_t: return "application/atom+xml"; case "pdf"_t: return "application/pdf"; case "json"_t: return "application/json"; case "rss"_t: return "application/rss+xml"; case "tar"_t: return "application/x-tar"; case "xht"_t: case "xhtml"_t: return "application/xhtml+xml"; case "xslt"_t: return "application/xslt+xml"; case "xml"_t: return "application/xml"; case "gz"_t: return "application/gzip"; case "zip"_t: return "application/zip"; case "wasm"_t: return "application/wasm"; } } bool can_compress_content_type(const std::string &content_type) { using udl::operator""_t; auto tag = str2tag(content_type); switch (tag) { case "image/svg+xml"_t: case "application/javascript"_t: case "application/json"_t: case "application/xml"_t: case "application/protobuf"_t: case "application/xhtml+xml"_t: return true; case "text/event-stream"_t: return false; default: return !content_type.rfind("text/", 0); } } EncodingType encoding_type(const Request &req, const Response &res) { auto ret = detail::can_compress_content_type(res.get_header_value("Content-Type")); if (!ret) { return EncodingType::None; } const auto &s = req.get_header_value("Accept-Encoding"); (void)(s); #ifdef CPPHTTPLIB_BROTLI_SUPPORT // TODO: 'Accept-Encoding' has br, not br;q=0 ret = s.find("br") != std::string::npos; if (ret) { return EncodingType::Brotli; } #endif #ifdef CPPHTTPLIB_ZLIB_SUPPORT // TODO: 'Accept-Encoding' has gzip, not gzip;q=0 ret = s.find("gzip") != std::string::npos; if (ret) { return EncodingType::Gzip; } #endif #ifdef CPPHTTPLIB_ZSTD_SUPPORT // TODO: 'Accept-Encoding' has zstd, not zstd;q=0 ret = s.find("zstd") != std::string::npos; if (ret) { return EncodingType::Zstd; } #endif return EncodingType::None; } bool nocompressor::compress(const char *data, size_t data_length, bool /*last*/, Callback callback) { if (!data_length) { return true; } return callback(data, data_length); } #ifdef CPPHTTPLIB_ZLIB_SUPPORT gzip_compressor::gzip_compressor() { std::memset(&strm_, 0, sizeof(strm_)); strm_.zalloc = Z_NULL; strm_.zfree = Z_NULL; strm_.opaque = Z_NULL; is_valid_ = deflateInit2(&strm_, Z_DEFAULT_COMPRESSION, Z_DEFLATED, 31, 8, Z_DEFAULT_STRATEGY) == Z_OK; } gzip_compressor::~gzip_compressor() { deflateEnd(&strm_); } bool gzip_compressor::compress(const char *data, size_t data_length, bool last, Callback callback) { assert(is_valid_); do { constexpr size_t max_avail_in = (std::numeric_limits::max)(); strm_.avail_in = static_cast( (std::min)(data_length, max_avail_in)); strm_.next_in = const_cast(reinterpret_cast(data)); data_length -= strm_.avail_in; data += strm_.avail_in; auto flush = (last && data_length == 0) ? Z_FINISH : Z_NO_FLUSH; auto ret = Z_OK; std::array buff{}; do { strm_.avail_out = static_cast(buff.size()); strm_.next_out = reinterpret_cast(buff.data()); ret = deflate(&strm_, flush); if (ret == Z_STREAM_ERROR) { return false; } if (!callback(buff.data(), buff.size() - strm_.avail_out)) { return false; } } while (strm_.avail_out == 0); assert((flush == Z_FINISH && ret == Z_STREAM_END) || (flush == Z_NO_FLUSH && ret == Z_OK)); assert(strm_.avail_in == 0); } while (data_length > 0); return true; } gzip_decompressor::gzip_decompressor() { std::memset(&strm_, 0, sizeof(strm_)); strm_.zalloc = Z_NULL; strm_.zfree = Z_NULL; strm_.opaque = Z_NULL; // 15 is the value of wbits, which should be at the maximum possible value // to ensure that any gzip stream can be decoded. The offset of 32 specifies // that the stream type should be automatically detected either gzip or // deflate. is_valid_ = inflateInit2(&strm_, 32 + 15) == Z_OK; } gzip_decompressor::~gzip_decompressor() { inflateEnd(&strm_); } bool gzip_decompressor::is_valid() const { return is_valid_; } bool gzip_decompressor::decompress(const char *data, size_t data_length, Callback callback) { assert(is_valid_); auto ret = Z_OK; do { constexpr size_t max_avail_in = (std::numeric_limits::max)(); strm_.avail_in = static_cast( (std::min)(data_length, max_avail_in)); strm_.next_in = const_cast(reinterpret_cast(data)); data_length -= strm_.avail_in; data += strm_.avail_in; std::array buff{}; while (strm_.avail_in > 0 && ret == Z_OK) { strm_.avail_out = static_cast(buff.size()); strm_.next_out = reinterpret_cast(buff.data()); ret = inflate(&strm_, Z_NO_FLUSH); assert(ret != Z_STREAM_ERROR); switch (ret) { case Z_NEED_DICT: case Z_DATA_ERROR: case Z_MEM_ERROR: inflateEnd(&strm_); return false; } if (!callback(buff.data(), buff.size() - strm_.avail_out)) { return false; } } if (ret != Z_OK && ret != Z_STREAM_END) { return false; } } while (data_length > 0); return true; } #endif #ifdef CPPHTTPLIB_BROTLI_SUPPORT brotli_compressor::brotli_compressor() { state_ = BrotliEncoderCreateInstance(nullptr, nullptr, nullptr); } brotli_compressor::~brotli_compressor() { BrotliEncoderDestroyInstance(state_); } bool brotli_compressor::compress(const char *data, size_t data_length, bool last, Callback callback) { std::array buff{}; auto operation = last ? BROTLI_OPERATION_FINISH : BROTLI_OPERATION_PROCESS; auto available_in = data_length; auto next_in = reinterpret_cast(data); for (;;) { if (last) { if (BrotliEncoderIsFinished(state_)) { break; } } else { if (!available_in) { break; } } auto available_out = buff.size(); auto next_out = buff.data(); if (!BrotliEncoderCompressStream(state_, operation, &available_in, &next_in, &available_out, &next_out, nullptr)) { return false; } auto output_bytes = buff.size() - available_out; if (output_bytes) { callback(reinterpret_cast(buff.data()), output_bytes); } } return true; } brotli_decompressor::brotli_decompressor() { decoder_s = BrotliDecoderCreateInstance(0, 0, 0); decoder_r = decoder_s ? BROTLI_DECODER_RESULT_NEEDS_MORE_INPUT : BROTLI_DECODER_RESULT_ERROR; } brotli_decompressor::~brotli_decompressor() { if (decoder_s) { BrotliDecoderDestroyInstance(decoder_s); } } bool brotli_decompressor::is_valid() const { return decoder_s; } bool brotli_decompressor::decompress(const char *data, size_t data_length, Callback callback) { if (decoder_r == BROTLI_DECODER_RESULT_SUCCESS || decoder_r == BROTLI_DECODER_RESULT_ERROR) { return 0; } auto next_in = reinterpret_cast(data); size_t avail_in = data_length; size_t total_out; decoder_r = BROTLI_DECODER_RESULT_NEEDS_MORE_OUTPUT; std::array buff{}; while (decoder_r == BROTLI_DECODER_RESULT_NEEDS_MORE_OUTPUT) { char *next_out = buff.data(); size_t avail_out = buff.size(); decoder_r = BrotliDecoderDecompressStream( decoder_s, &avail_in, &next_in, &avail_out, reinterpret_cast(&next_out), &total_out); if (decoder_r == BROTLI_DECODER_RESULT_ERROR) { return false; } if (!callback(buff.data(), buff.size() - avail_out)) { return false; } } return decoder_r == BROTLI_DECODER_RESULT_SUCCESS || decoder_r == BROTLI_DECODER_RESULT_NEEDS_MORE_INPUT; } #endif #ifdef CPPHTTPLIB_ZSTD_SUPPORT zstd_compressor::zstd_compressor() { ctx_ = ZSTD_createCCtx(); ZSTD_CCtx_setParameter(ctx_, ZSTD_c_compressionLevel, ZSTD_fast); } zstd_compressor::~zstd_compressor() { ZSTD_freeCCtx(ctx_); } bool zstd_compressor::compress(const char *data, size_t data_length, bool last, Callback callback) { std::array buff{}; ZSTD_EndDirective mode = last ? ZSTD_e_end : ZSTD_e_continue; ZSTD_inBuffer input = {data, data_length, 0}; bool finished; do { ZSTD_outBuffer output = {buff.data(), CPPHTTPLIB_COMPRESSION_BUFSIZ, 0}; size_t const remaining = ZSTD_compressStream2(ctx_, &output, &input, mode); if (ZSTD_isError(remaining)) { return false; } if (!callback(buff.data(), output.pos)) { return false; } finished = last ? (remaining == 0) : (input.pos == input.size); } while (!finished); return true; } zstd_decompressor::zstd_decompressor() { ctx_ = ZSTD_createDCtx(); } zstd_decompressor::~zstd_decompressor() { ZSTD_freeDCtx(ctx_); } bool zstd_decompressor::is_valid() const { return ctx_ != nullptr; } bool zstd_decompressor::decompress(const char *data, size_t data_length, Callback callback) { std::array buff{}; ZSTD_inBuffer input = {data, data_length, 0}; while (input.pos < input.size) { ZSTD_outBuffer output = {buff.data(), CPPHTTPLIB_COMPRESSION_BUFSIZ, 0}; size_t const remaining = ZSTD_decompressStream(ctx_, &output, &input); if (ZSTD_isError(remaining)) { return false; } if (!callback(buff.data(), output.pos)) { return false; } } return true; } #endif bool is_prohibited_header_name(const std::string &name) { using udl::operator""_t; switch (str2tag(name)) { case "REMOTE_ADDR"_t: case "REMOTE_PORT"_t: case "LOCAL_ADDR"_t: case "LOCAL_PORT"_t: return true; default: return false; } } bool has_header(const Headers &headers, const std::string &key) { if (is_prohibited_header_name(key)) { return false; } return headers.find(key) != headers.end(); } const char *get_header_value(const Headers &headers, const std::string &key, const char *def, size_t id) { if (is_prohibited_header_name(key)) { #ifndef CPPHTTPLIB_NO_EXCEPTIONS std::string msg = "Prohibited header name '" + key + "' is specified."; throw std::invalid_argument(msg); #else return ""; #endif } auto rng = headers.equal_range(key); auto it = rng.first; std::advance(it, static_cast(id)); if (it != rng.second) { return it->second.c_str(); } return def; } template bool parse_header(const char *beg, const char *end, T fn) { // Skip trailing spaces and tabs. while (beg < end && is_space_or_tab(end[-1])) { end--; } auto p = beg; while (p < end && *p != ':') { p++; } auto name = std::string(beg, p); if (!detail::fields::is_field_name(name)) { return false; } if (p == end) { return false; } auto key_end = p; if (*p++ != ':') { return false; } while (p < end && is_space_or_tab(*p)) { p++; } if (p <= end) { auto key_len = key_end - beg; if (!key_len) { return false; } auto key = std::string(beg, key_end); auto val = std::string(p, end); if (!detail::fields::is_field_value(val)) { return false; } if (case_ignore::equal(key, "Location") || case_ignore::equal(key, "Referer")) { fn(key, val); } else { fn(key, decode_path_component(val)); } return true; } return false; } bool read_headers(Stream &strm, Headers &headers) { const auto bufsiz = 2048; char buf[bufsiz]; stream_line_reader line_reader(strm, buf, bufsiz); size_t header_count = 0; for (;;) { if (!line_reader.getline()) { return false; } // Check if the line ends with CRLF. auto line_terminator_len = 2; if (line_reader.end_with_crlf()) { // Blank line indicates end of headers. if (line_reader.size() == 2) { break; } } else { #ifdef CPPHTTPLIB_ALLOW_LF_AS_LINE_TERMINATOR // Blank line indicates end of headers. if (line_reader.size() == 1) { break; } line_terminator_len = 1; #else continue; // Skip invalid line. #endif } if (line_reader.size() > CPPHTTPLIB_HEADER_MAX_LENGTH) { return false; } // Check header count limit if (header_count >= CPPHTTPLIB_HEADER_MAX_COUNT) { return false; } // Exclude line terminator auto end = line_reader.ptr() + line_reader.size() - line_terminator_len; if (!parse_header(line_reader.ptr(), end, [&](const std::string &key, const std::string &val) { headers.emplace(key, val); })) { return false; } header_count++; } return true; } bool read_content_with_length(Stream &strm, size_t len, DownloadProgress progress, ContentReceiverWithProgress out) { char buf[CPPHTTPLIB_RECV_BUFSIZ]; size_t r = 0; while (r < len) { auto read_len = static_cast(len - r); auto n = strm.read(buf, (std::min)(read_len, CPPHTTPLIB_RECV_BUFSIZ)); if (n <= 0) { return false; } if (!out(buf, static_cast(n), r, len)) { return false; } r += static_cast(n); if (progress) { if (!progress(r, len)) { return false; } } } return true; } void skip_content_with_length(Stream &strm, size_t len) { char buf[CPPHTTPLIB_RECV_BUFSIZ]; size_t r = 0; while (r < len) { auto read_len = static_cast(len - r); auto n = strm.read(buf, (std::min)(read_len, CPPHTTPLIB_RECV_BUFSIZ)); if (n <= 0) { return; } r += static_cast(n); } } enum class ReadContentResult { Success, // Successfully read the content PayloadTooLarge, // The content exceeds the specified payload limit Error // An error occurred while reading the content }; ReadContentResult read_content_without_length(Stream &strm, size_t payload_max_length, ContentReceiverWithProgress out) { char buf[CPPHTTPLIB_RECV_BUFSIZ]; size_t r = 0; for (;;) { auto n = strm.read(buf, CPPHTTPLIB_RECV_BUFSIZ); if (n == 0) { return ReadContentResult::Success; } if (n < 0) { return ReadContentResult::Error; } // Check if adding this data would exceed the payload limit if (r > payload_max_length || payload_max_length - r < static_cast(n)) { return ReadContentResult::PayloadTooLarge; } if (!out(buf, static_cast(n), r, 0)) { return ReadContentResult::Error; } r += static_cast(n); } return ReadContentResult::Success; } template ReadContentResult read_content_chunked(Stream &strm, T &x, size_t payload_max_length, ContentReceiverWithProgress out) { const auto bufsiz = 16; char buf[bufsiz]; stream_line_reader line_reader(strm, buf, bufsiz); if (!line_reader.getline()) { return ReadContentResult::Error; } unsigned long chunk_len; size_t total_len = 0; while (true) { char *end_ptr; chunk_len = std::strtoul(line_reader.ptr(), &end_ptr, 16); if (end_ptr == line_reader.ptr()) { return ReadContentResult::Error; } if (chunk_len == ULONG_MAX) { return ReadContentResult::Error; } if (chunk_len == 0) { break; } // Check if adding this chunk would exceed the payload limit if (total_len > payload_max_length || payload_max_length - total_len < chunk_len) { return ReadContentResult::PayloadTooLarge; } total_len += chunk_len; if (!read_content_with_length(strm, chunk_len, nullptr, out)) { return ReadContentResult::Error; } if (!line_reader.getline()) { return ReadContentResult::Error; } if (strcmp(line_reader.ptr(), "\r\n") != 0) { return ReadContentResult::Error; } if (!line_reader.getline()) { return ReadContentResult::Error; } } assert(chunk_len == 0); // NOTE: In RFC 9112, '7.1 Chunked Transfer Coding' mentions "The chunked // transfer coding is complete when a chunk with a chunk-size of zero is // received, possibly followed by a trailer section, and finally terminated by // an empty line". https://www.rfc-editor.org/rfc/rfc9112.html#section-7.1 // // In '7.1.3. Decoding Chunked', however, the pseudo-code in the section // does't care for the existence of the final CRLF. In other words, it seems // to be ok whether the final CRLF exists or not in the chunked data. // https://www.rfc-editor.org/rfc/rfc9112.html#section-7.1.3 // // According to the reference code in RFC 9112, cpp-httplib now allows // chunked transfer coding data without the final CRLF. if (!line_reader.getline()) { return ReadContentResult::Success; } // RFC 7230 Section 4.1.2 - Headers prohibited in trailers thread_local case_ignore::unordered_set prohibited_trailers = { // Message framing "transfer-encoding", "content-length", // Routing "host", // Authentication "authorization", "www-authenticate", "proxy-authenticate", "proxy-authorization", "cookie", "set-cookie", // Request modifiers "cache-control", "expect", "max-forwards", "pragma", "range", "te", // Response control "age", "expires", "date", "location", "retry-after", "vary", "warning", // Payload processing "content-encoding", "content-type", "content-range", "trailer"}; // Parse declared trailer headers once for performance case_ignore::unordered_set declared_trailers; if (has_header(x.headers, "Trailer")) { auto trailer_header = get_header_value(x.headers, "Trailer", "", 0); auto len = std::strlen(trailer_header); split(trailer_header, trailer_header + len, ',', [&](const char *b, const char *e) { std::string key(b, e); if (prohibited_trailers.find(key) == prohibited_trailers.end()) { declared_trailers.insert(key); } }); } size_t trailer_header_count = 0; while (strcmp(line_reader.ptr(), "\r\n") != 0) { if (line_reader.size() > CPPHTTPLIB_HEADER_MAX_LENGTH) { return ReadContentResult::Error; } // Check trailer header count limit if (trailer_header_count >= CPPHTTPLIB_HEADER_MAX_COUNT) { return ReadContentResult::Error; } // Exclude line terminator constexpr auto line_terminator_len = 2; auto end = line_reader.ptr() + line_reader.size() - line_terminator_len; parse_header(line_reader.ptr(), end, [&](const std::string &key, const std::string &val) { if (declared_trailers.find(key) != declared_trailers.end()) { x.trailers.emplace(key, val); trailer_header_count++; } }); if (!line_reader.getline()) { return ReadContentResult::Error; } } return ReadContentResult::Success; } bool is_chunked_transfer_encoding(const Headers &headers) { return case_ignore::equal( get_header_value(headers, "Transfer-Encoding", "", 0), "chunked"); } template bool prepare_content_receiver(T &x, int &status, ContentReceiverWithProgress receiver, bool decompress, U callback) { if (decompress) { std::string encoding = x.get_header_value("Content-Encoding"); std::unique_ptr decompressor; if (encoding == "gzip" || encoding == "deflate") { #ifdef CPPHTTPLIB_ZLIB_SUPPORT decompressor = detail::make_unique(); #else status = StatusCode::UnsupportedMediaType_415; return false; #endif } else if (encoding.find("br") != std::string::npos) { #ifdef CPPHTTPLIB_BROTLI_SUPPORT decompressor = detail::make_unique(); #else status = StatusCode::UnsupportedMediaType_415; return false; #endif } else if (encoding == "zstd") { #ifdef CPPHTTPLIB_ZSTD_SUPPORT decompressor = detail::make_unique(); #else status = StatusCode::UnsupportedMediaType_415; return false; #endif } if (decompressor) { if (decompressor->is_valid()) { ContentReceiverWithProgress out = [&](const char *buf, size_t n, size_t off, size_t len) { return decompressor->decompress(buf, n, [&](const char *buf2, size_t n2) { return receiver(buf2, n2, off, len); }); }; return callback(std::move(out)); } else { status = StatusCode::InternalServerError_500; return false; } } } ContentReceiverWithProgress out = [&](const char *buf, size_t n, size_t off, size_t len) { return receiver(buf, n, off, len); }; return callback(std::move(out)); } template bool read_content(Stream &strm, T &x, size_t payload_max_length, int &status, DownloadProgress progress, ContentReceiverWithProgress receiver, bool decompress) { return prepare_content_receiver( x, status, std::move(receiver), decompress, [&](const ContentReceiverWithProgress &out) { auto ret = true; auto exceed_payload_max_length = false; if (is_chunked_transfer_encoding(x.headers)) { auto result = read_content_chunked(strm, x, payload_max_length, out); if (result == ReadContentResult::Success) { ret = true; } else if (result == ReadContentResult::PayloadTooLarge) { exceed_payload_max_length = true; ret = false; } else { ret = false; } } else if (!has_header(x.headers, "Content-Length")) { auto result = read_content_without_length(strm, payload_max_length, out); if (result == ReadContentResult::Success) { ret = true; } else if (result == ReadContentResult::PayloadTooLarge) { exceed_payload_max_length = true; ret = false; } else { ret = false; } } else { auto is_invalid_value = false; auto len = get_header_value_u64(x.headers, "Content-Length", (std::numeric_limits::max)(), 0, is_invalid_value); if (is_invalid_value) { ret = false; } else if (len > payload_max_length) { exceed_payload_max_length = true; skip_content_with_length(strm, len); ret = false; } else if (len > 0) { ret = read_content_with_length(strm, len, std::move(progress), out); } } if (!ret) { status = exceed_payload_max_length ? StatusCode::PayloadTooLarge_413 : StatusCode::BadRequest_400; } return ret; }); } ssize_t write_request_line(Stream &strm, const std::string &method, const std::string &path) { std::string s = method; s += " "; s += path; s += " HTTP/1.1\r\n"; return strm.write(s.data(), s.size()); } ssize_t write_response_line(Stream &strm, int status) { std::string s = "HTTP/1.1 "; s += std::to_string(status); s += " "; s += httplib::status_message(status); s += "\r\n"; return strm.write(s.data(), s.size()); } ssize_t write_headers(Stream &strm, const Headers &headers) { ssize_t write_len = 0; for (const auto &x : headers) { std::string s; s = x.first; s += ": "; s += x.second; s += "\r\n"; auto len = strm.write(s.data(), s.size()); if (len < 0) { return len; } write_len += len; } auto len = strm.write("\r\n"); if (len < 0) { return len; } write_len += len; return write_len; } bool write_data(Stream &strm, const char *d, size_t l) { size_t offset = 0; while (offset < l) { auto length = strm.write(d + offset, l - offset); if (length < 0) { return false; } offset += static_cast(length); } return true; } template bool write_content_with_progress(Stream &strm, const ContentProvider &content_provider, size_t offset, size_t length, T is_shutting_down, const UploadProgress &upload_progress, Error &error) { size_t end_offset = offset + length; size_t start_offset = offset; auto ok = true; DataSink data_sink; data_sink.write = [&](const char *d, size_t l) -> bool { if (ok) { if (write_data(strm, d, l)) { offset += l; if (upload_progress && length > 0) { size_t current_written = offset - start_offset; if (!upload_progress(current_written, length)) { ok = false; return false; } } } else { ok = false; } } return ok; }; data_sink.is_writable = [&]() -> bool { return strm.wait_writable(); }; while (offset < end_offset && !is_shutting_down()) { if (!strm.wait_writable()) { error = Error::Write; return false; } else if (!content_provider(offset, end_offset - offset, data_sink)) { error = Error::Canceled; return false; } else if (!ok) { error = Error::Write; return false; } } error = Error::Success; return true; } template bool write_content(Stream &strm, const ContentProvider &content_provider, size_t offset, size_t length, T is_shutting_down, Error &error) { return write_content_with_progress(strm, content_provider, offset, length, is_shutting_down, nullptr, error); } template bool write_content(Stream &strm, const ContentProvider &content_provider, size_t offset, size_t length, const T &is_shutting_down) { auto error = Error::Success; return write_content(strm, content_provider, offset, length, is_shutting_down, error); } template bool write_content_without_length(Stream &strm, const ContentProvider &content_provider, const T &is_shutting_down) { size_t offset = 0; auto data_available = true; auto ok = true; DataSink data_sink; data_sink.write = [&](const char *d, size_t l) -> bool { if (ok) { offset += l; if (!write_data(strm, d, l)) { ok = false; } } return ok; }; data_sink.is_writable = [&]() -> bool { return strm.wait_writable(); }; data_sink.done = [&](void) { data_available = false; }; while (data_available && !is_shutting_down()) { if (!strm.wait_writable()) { return false; } else if (!content_provider(offset, 0, data_sink)) { return false; } else if (!ok) { return false; } } return true; } template bool write_content_chunked(Stream &strm, const ContentProvider &content_provider, const T &is_shutting_down, U &compressor, Error &error) { size_t offset = 0; auto data_available = true; auto ok = true; DataSink data_sink; data_sink.write = [&](const char *d, size_t l) -> bool { if (ok) { data_available = l > 0; offset += l; std::string payload; if (compressor.compress(d, l, false, [&](const char *data, size_t data_len) { payload.append(data, data_len); return true; })) { if (!payload.empty()) { // Emit chunked response header and footer for each chunk auto chunk = from_i_to_hex(payload.size()) + "\r\n" + payload + "\r\n"; if (!write_data(strm, chunk.data(), chunk.size())) { ok = false; } } } else { ok = false; } } return ok; }; data_sink.is_writable = [&]() -> bool { return strm.wait_writable(); }; auto done_with_trailer = [&](const Headers *trailer) { if (!ok) { return; } data_available = false; std::string payload; if (!compressor.compress(nullptr, 0, true, [&](const char *data, size_t data_len) { payload.append(data, data_len); return true; })) { ok = false; return; } if (!payload.empty()) { // Emit chunked response header and footer for each chunk auto chunk = from_i_to_hex(payload.size()) + "\r\n" + payload + "\r\n"; if (!write_data(strm, chunk.data(), chunk.size())) { ok = false; return; } } constexpr const char done_marker[] = "0\r\n"; if (!write_data(strm, done_marker, str_len(done_marker))) { ok = false; } // Trailer if (trailer) { for (const auto &kv : *trailer) { std::string field_line = kv.first + ": " + kv.second + "\r\n"; if (!write_data(strm, field_line.data(), field_line.size())) { ok = false; } } } constexpr const char crlf[] = "\r\n"; if (!write_data(strm, crlf, str_len(crlf))) { ok = false; } }; data_sink.done = [&](void) { done_with_trailer(nullptr); }; data_sink.done_with_trailer = [&](const Headers &trailer) { done_with_trailer(&trailer); }; while (data_available && !is_shutting_down()) { if (!strm.wait_writable()) { error = Error::Write; return false; } else if (!content_provider(offset, 0, data_sink)) { error = Error::Canceled; return false; } else if (!ok) { error = Error::Write; return false; } } error = Error::Success; return true; } template bool write_content_chunked(Stream &strm, const ContentProvider &content_provider, const T &is_shutting_down, U &compressor) { auto error = Error::Success; return write_content_chunked(strm, content_provider, is_shutting_down, compressor, error); } template bool redirect(T &cli, Request &req, Response &res, const std::string &path, const std::string &location, Error &error) { Request new_req = req; new_req.path = path; new_req.redirect_count_ -= 1; if (res.status == StatusCode::SeeOther_303 && (req.method != "GET" && req.method != "HEAD")) { new_req.method = "GET"; new_req.body.clear(); new_req.headers.clear(); } Response new_res; auto ret = cli.send(new_req, new_res, error); if (ret) { req = new_req; res = new_res; if (res.location.empty()) { res.location = location; } } return ret; } std::string params_to_query_str(const Params ¶ms) { std::string query; for (auto it = params.begin(); it != params.end(); ++it) { if (it != params.begin()) { query += "&"; } query += encode_query_component(it->first); query += "="; query += encode_query_component(it->second); } return query; } void parse_query_text(const char *data, std::size_t size, Params ¶ms) { std::set cache; split(data, data + size, '&', [&](const char *b, const char *e) { std::string kv(b, e); if (cache.find(kv) != cache.end()) { return; } cache.insert(std::move(kv)); std::string key; std::string val; divide(b, static_cast(e - b), '=', [&](const char *lhs_data, std::size_t lhs_size, const char *rhs_data, std::size_t rhs_size) { key.assign(lhs_data, lhs_size); val.assign(rhs_data, rhs_size); }); if (!key.empty()) { params.emplace(decode_query_component(key), decode_query_component(val)); } }); } void parse_query_text(const std::string &s, Params ¶ms) { parse_query_text(s.data(), s.size(), params); } bool parse_multipart_boundary(const std::string &content_type, std::string &boundary) { auto boundary_keyword = "boundary="; auto pos = content_type.find(boundary_keyword); if (pos == std::string::npos) { return false; } auto end = content_type.find(';', pos); auto beg = pos + strlen(boundary_keyword); boundary = trim_double_quotes_copy(content_type.substr(beg, end - beg)); return !boundary.empty(); } void parse_disposition_params(const std::string &s, Params ¶ms) { std::set cache; split(s.data(), s.data() + s.size(), ';', [&](const char *b, const char *e) { std::string kv(b, e); if (cache.find(kv) != cache.end()) { return; } cache.insert(kv); std::string key; std::string val; split(b, e, '=', [&](const char *b2, const char *e2) { if (key.empty()) { key.assign(b2, e2); } else { val.assign(b2, e2); } }); if (!key.empty()) { params.emplace(trim_double_quotes_copy((key)), trim_double_quotes_copy((val))); } }); } #ifdef CPPHTTPLIB_NO_EXCEPTIONS bool parse_range_header(const std::string &s, Ranges &ranges) { #else bool parse_range_header(const std::string &s, Ranges &ranges) try { #endif auto is_valid = [](const std::string &str) { return std::all_of(str.cbegin(), str.cend(), [](unsigned char c) { return std::isdigit(c); }); }; if (s.size() > 7 && s.compare(0, 6, "bytes=") == 0) { const auto pos = static_cast(6); const auto len = static_cast(s.size() - 6); auto all_valid_ranges = true; split(&s[pos], &s[pos + len], ',', [&](const char *b, const char *e) { if (!all_valid_ranges) { return; } const auto it = std::find(b, e, '-'); if (it == e) { all_valid_ranges = false; return; } const auto lhs = std::string(b, it); const auto rhs = std::string(it + 1, e); if (!is_valid(lhs) || !is_valid(rhs)) { all_valid_ranges = false; return; } const auto first = static_cast(lhs.empty() ? -1 : std::stoll(lhs)); const auto last = static_cast(rhs.empty() ? -1 : std::stoll(rhs)); if ((first == -1 && last == -1) || (first != -1 && last != -1 && first > last)) { all_valid_ranges = false; return; } ranges.emplace_back(first, last); }); return all_valid_ranges && !ranges.empty(); } return false; #ifdef CPPHTTPLIB_NO_EXCEPTIONS } #else } catch (...) { return false; } #endif bool parse_accept_header(const std::string &s, std::vector &content_types) { content_types.clear(); // Empty string is considered valid (no preference) if (s.empty()) { return true; } // Check for invalid patterns: leading/trailing commas or consecutive commas if (s.front() == ',' || s.back() == ',' || s.find(",,") != std::string::npos) { return false; } struct AcceptEntry { std::string media_type; double quality; int order; // Original order in header }; std::vector entries; int order = 0; bool has_invalid_entry = false; // Split by comma and parse each entry split(s.data(), s.data() + s.size(), ',', [&](const char *b, const char *e) { std::string entry(b, e); entry = trim_copy(entry); if (entry.empty()) { has_invalid_entry = true; return; } AcceptEntry accept_entry; accept_entry.quality = 1.0; // Default quality accept_entry.order = order++; // Find q= parameter auto q_pos = entry.find(";q="); if (q_pos == std::string::npos) { q_pos = entry.find("; q="); } if (q_pos != std::string::npos) { // Extract media type (before q parameter) accept_entry.media_type = trim_copy(entry.substr(0, q_pos)); // Extract quality value auto q_start = entry.find('=', q_pos) + 1; auto q_end = entry.find(';', q_start); if (q_end == std::string::npos) { q_end = entry.length(); } std::string quality_str = trim_copy(entry.substr(q_start, q_end - q_start)); if (quality_str.empty()) { has_invalid_entry = true; return; } #ifdef CPPHTTPLIB_NO_EXCEPTIONS { std::istringstream iss(quality_str); iss >> accept_entry.quality; // Check if conversion was successful and entire string was consumed if (iss.fail() || !iss.eof()) { has_invalid_entry = true; return; } } #else try { accept_entry.quality = std::stod(quality_str); } catch (...) { has_invalid_entry = true; return; } #endif // Check if quality is in valid range [0.0, 1.0] if (accept_entry.quality < 0.0 || accept_entry.quality > 1.0) { has_invalid_entry = true; return; } } else { // No quality parameter, use entire entry as media type accept_entry.media_type = entry; } // Remove additional parameters from media type auto param_pos = accept_entry.media_type.find(';'); if (param_pos != std::string::npos) { accept_entry.media_type = trim_copy(accept_entry.media_type.substr(0, param_pos)); } // Basic validation of media type format if (accept_entry.media_type.empty()) { has_invalid_entry = true; return; } // Check for basic media type format (should contain '/' or be '*') if (accept_entry.media_type != "*" && accept_entry.media_type.find('/') == std::string::npos) { has_invalid_entry = true; return; } entries.push_back(accept_entry); }); // Return false if any invalid entry was found if (has_invalid_entry) { return false; } // Sort by quality (descending), then by original order (ascending) std::sort(entries.begin(), entries.end(), [](const AcceptEntry &a, const AcceptEntry &b) { if (a.quality != b.quality) { return a.quality > b.quality; // Higher quality first } return a.order < b.order; // Earlier order first for same quality }); // Extract sorted media types content_types.reserve(entries.size()); for (const auto &entry : entries) { content_types.push_back(entry.media_type); } return true; } class FormDataParser { public: FormDataParser() = default; void set_boundary(std::string &&boundary) { boundary_ = boundary; dash_boundary_crlf_ = dash_ + boundary_ + crlf_; crlf_dash_boundary_ = crlf_ + dash_ + boundary_; } bool is_valid() const { return is_valid_; } bool parse(const char *buf, size_t n, const FormDataHeader &header_callback, const ContentReceiver &content_callback) { buf_append(buf, n); while (buf_size() > 0) { switch (state_) { case 0: { // Initial boundary auto pos = buf_find(dash_boundary_crlf_); if (pos == buf_size()) { return true; } buf_erase(pos + dash_boundary_crlf_.size()); state_ = 1; break; } case 1: { // New entry clear_file_info(); state_ = 2; break; } case 2: { // Headers auto pos = buf_find(crlf_); if (pos > CPPHTTPLIB_HEADER_MAX_LENGTH) { return false; } while (pos < buf_size()) { // Empty line if (pos == 0) { if (!header_callback(file_)) { is_valid_ = false; return false; } buf_erase(crlf_.size()); state_ = 3; break; } const auto header = buf_head(pos); if (!parse_header(header.data(), header.data() + header.size(), [&](const std::string &, const std::string &) {})) { is_valid_ = false; return false; } // Parse and emplace space trimmed headers into a map if (!parse_header( header.data(), header.data() + header.size(), [&](const std::string &key, const std::string &val) { file_.headers.emplace(key, val); })) { is_valid_ = false; return false; } constexpr const char header_content_type[] = "Content-Type:"; if (start_with_case_ignore(header, header_content_type)) { file_.content_type = trim_copy(header.substr(str_len(header_content_type))); } else { thread_local const std::regex re_content_disposition( R"~(^Content-Disposition:\s*form-data;\s*(.*)$)~", std::regex_constants::icase); std::smatch m; if (std::regex_match(header, m, re_content_disposition)) { Params params; parse_disposition_params(m[1], params); auto it = params.find("name"); if (it != params.end()) { file_.name = it->second; } else { is_valid_ = false; return false; } it = params.find("filename"); if (it != params.end()) { file_.filename = it->second; } it = params.find("filename*"); if (it != params.end()) { // Only allow UTF-8 encoding... thread_local const std::regex re_rfc5987_encoding( R"~(^UTF-8''(.+?)$)~", std::regex_constants::icase); std::smatch m2; if (std::regex_match(it->second, m2, re_rfc5987_encoding)) { file_.filename = decode_path_component(m2[1]); // override... } else { is_valid_ = false; return false; } } } } buf_erase(pos + crlf_.size()); pos = buf_find(crlf_); } if (state_ != 3) { return true; } break; } case 3: { // Body if (crlf_dash_boundary_.size() > buf_size()) { return true; } auto pos = buf_find(crlf_dash_boundary_); if (pos < buf_size()) { if (!content_callback(buf_data(), pos)) { is_valid_ = false; return false; } buf_erase(pos + crlf_dash_boundary_.size()); state_ = 4; } else { auto len = buf_size() - crlf_dash_boundary_.size(); if (len > 0) { if (!content_callback(buf_data(), len)) { is_valid_ = false; return false; } buf_erase(len); } return true; } break; } case 4: { // Boundary if (crlf_.size() > buf_size()) { return true; } if (buf_start_with(crlf_)) { buf_erase(crlf_.size()); state_ = 1; } else { if (dash_.size() > buf_size()) { return true; } if (buf_start_with(dash_)) { buf_erase(dash_.size()); is_valid_ = true; buf_erase(buf_size()); // Remove epilogue } else { return true; } } break; } } } return true; } private: void clear_file_info() { file_.name.clear(); file_.filename.clear(); file_.content_type.clear(); file_.headers.clear(); } bool start_with_case_ignore(const std::string &a, const char *b) const { const auto b_len = strlen(b); if (a.size() < b_len) { return false; } for (size_t i = 0; i < b_len; i++) { if (case_ignore::to_lower(a[i]) != case_ignore::to_lower(b[i])) { return false; } } return true; } const std::string dash_ = "--"; const std::string crlf_ = "\r\n"; std::string boundary_; std::string dash_boundary_crlf_; std::string crlf_dash_boundary_; size_t state_ = 0; bool is_valid_ = false; FormData file_; // Buffer bool start_with(const std::string &a, size_t spos, size_t epos, const std::string &b) const { if (epos - spos < b.size()) { return false; } for (size_t i = 0; i < b.size(); i++) { if (a[i + spos] != b[i]) { return false; } } return true; } size_t buf_size() const { return buf_epos_ - buf_spos_; } const char *buf_data() const { return &buf_[buf_spos_]; } std::string buf_head(size_t l) const { return buf_.substr(buf_spos_, l); } bool buf_start_with(const std::string &s) const { return start_with(buf_, buf_spos_, buf_epos_, s); } size_t buf_find(const std::string &s) const { auto c = s.front(); size_t off = buf_spos_; while (off < buf_epos_) { auto pos = off; while (true) { if (pos == buf_epos_) { return buf_size(); } if (buf_[pos] == c) { break; } pos++; } auto remaining_size = buf_epos_ - pos; if (s.size() > remaining_size) { return buf_size(); } if (start_with(buf_, pos, buf_epos_, s)) { return pos - buf_spos_; } off = pos + 1; } return buf_size(); } void buf_append(const char *data, size_t n) { auto remaining_size = buf_size(); if (remaining_size > 0 && buf_spos_ > 0) { for (size_t i = 0; i < remaining_size; i++) { buf_[i] = buf_[buf_spos_ + i]; } } buf_spos_ = 0; buf_epos_ = remaining_size; if (remaining_size + n > buf_.size()) { buf_.resize(remaining_size + n); } for (size_t i = 0; i < n; i++) { buf_[buf_epos_ + i] = data[i]; } buf_epos_ += n; } void buf_erase(size_t size) { buf_spos_ += size; } std::string buf_; size_t buf_spos_ = 0; size_t buf_epos_ = 0; }; std::string random_string(size_t length) { constexpr const char data[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; thread_local auto engine([]() { // std::random_device might actually be deterministic on some // platforms, but due to lack of support in the c++ standard library, // doing better requires either some ugly hacks or breaking portability. std::random_device seed_gen; // Request 128 bits of entropy for initialization std::seed_seq seed_sequence{seed_gen(), seed_gen(), seed_gen(), seed_gen()}; return std::mt19937(seed_sequence); }()); std::string result; for (size_t i = 0; i < length; i++) { result += data[engine() % (sizeof(data) - 1)]; } return result; } std::string make_multipart_data_boundary() { return "--cpp-httplib-multipart-data-" + detail::random_string(16); } bool is_multipart_boundary_chars_valid(const std::string &boundary) { auto valid = true; for (size_t i = 0; i < boundary.size(); i++) { auto c = boundary[i]; if (!std::isalnum(c) && c != '-' && c != '_') { valid = false; break; } } return valid; } template std::string serialize_multipart_formdata_item_begin(const T &item, const std::string &boundary) { std::string body = "--" + boundary + "\r\n"; body += "Content-Disposition: form-data; name=\"" + item.name + "\""; if (!item.filename.empty()) { body += "; filename=\"" + item.filename + "\""; } body += "\r\n"; if (!item.content_type.empty()) { body += "Content-Type: " + item.content_type + "\r\n"; } body += "\r\n"; return body; } std::string serialize_multipart_formdata_item_end() { return "\r\n"; } std::string serialize_multipart_formdata_finish(const std::string &boundary) { return "--" + boundary + "--\r\n"; } std::string serialize_multipart_formdata_get_content_type(const std::string &boundary) { return "multipart/form-data; boundary=" + boundary; } std::string serialize_multipart_formdata(const UploadFormDataItems &items, const std::string &boundary, bool finish = true) { std::string body; for (const auto &item : items) { body += serialize_multipart_formdata_item_begin(item, boundary); body += item.content + serialize_multipart_formdata_item_end(); } if (finish) { body += serialize_multipart_formdata_finish(boundary); } return body; } void coalesce_ranges(Ranges &ranges, size_t content_length) { if (ranges.size() <= 1) return; // Sort ranges by start position std::sort(ranges.begin(), ranges.end(), [](const Range &a, const Range &b) { return a.first < b.first; }); Ranges coalesced; coalesced.reserve(ranges.size()); for (auto &r : ranges) { auto first_pos = r.first; auto last_pos = r.second; // Handle special cases like in range_error if (first_pos == -1 && last_pos == -1) { first_pos = 0; last_pos = static_cast(content_length); } if (first_pos == -1) { first_pos = static_cast(content_length) - last_pos; last_pos = static_cast(content_length) - 1; } if (last_pos == -1 || last_pos >= static_cast(content_length)) { last_pos = static_cast(content_length) - 1; } // Skip invalid ranges if (!(0 <= first_pos && first_pos <= last_pos && last_pos < static_cast(content_length))) { continue; } // Coalesce with previous range if overlapping or adjacent (but not // identical) if (!coalesced.empty()) { auto &prev = coalesced.back(); // Check if current range overlaps or is adjacent to previous range // but don't coalesce identical ranges (allow duplicates) if (first_pos <= prev.second + 1 && !(first_pos == prev.first && last_pos == prev.second)) { // Extend the previous range prev.second = (std::max)(prev.second, last_pos); continue; } } // Add new range coalesced.emplace_back(first_pos, last_pos); } ranges = std::move(coalesced); } bool range_error(Request &req, Response &res) { if (!req.ranges.empty() && 200 <= res.status && res.status < 300) { ssize_t content_len = static_cast( res.content_length_ ? res.content_length_ : res.body.size()); std::vector> processed_ranges; size_t overwrapping_count = 0; // NOTE: The following Range check is based on '14.2. Range' in RFC 9110 // 'HTTP Semantics' to avoid potential denial-of-service attacks. // https://www.rfc-editor.org/rfc/rfc9110#section-14.2 // Too many ranges if (req.ranges.size() > CPPHTTPLIB_RANGE_MAX_COUNT) { return true; } for (auto &r : req.ranges) { auto &first_pos = r.first; auto &last_pos = r.second; if (first_pos == -1 && last_pos == -1) { first_pos = 0; last_pos = content_len; } if (first_pos == -1) { first_pos = content_len - last_pos; last_pos = content_len - 1; } // NOTE: RFC-9110 '14.1.2. Byte Ranges': // A client can limit the number of bytes requested without knowing the // size of the selected representation. If the last-pos value is absent, // or if the value is greater than or equal to the current length of the // representation data, the byte range is interpreted as the remainder of // the representation (i.e., the server replaces the value of last-pos // with a value that is one less than the current length of the selected // representation). // https://www.rfc-editor.org/rfc/rfc9110.html#section-14.1.2-6 if (last_pos == -1 || last_pos >= content_len) { last_pos = content_len - 1; } // Range must be within content length if (!(0 <= first_pos && first_pos <= last_pos && last_pos <= content_len - 1)) { return true; } // Request must not have more than two overlapping ranges for (const auto &processed_range : processed_ranges) { if (!(last_pos < processed_range.first || first_pos > processed_range.second)) { overwrapping_count++; if (overwrapping_count > 2) { return true; } break; // Only count once per range } } processed_ranges.emplace_back(first_pos, last_pos); } // After validation, coalesce overlapping ranges as per RFC 9110 coalesce_ranges(req.ranges, static_cast(content_len)); } return false; } std::pair get_range_offset_and_length(Range r, size_t content_length) { assert(r.first != -1 && r.second != -1); assert(0 <= r.first && r.first < static_cast(content_length)); assert(r.first <= r.second && r.second < static_cast(content_length)); (void)(content_length); return std::make_pair(r.first, static_cast(r.second - r.first) + 1); } std::string make_content_range_header_field( const std::pair &offset_and_length, size_t content_length) { auto st = offset_and_length.first; auto ed = st + offset_and_length.second - 1; std::string field = "bytes "; field += std::to_string(st); field += "-"; field += std::to_string(ed); field += "/"; field += std::to_string(content_length); return field; } template bool process_multipart_ranges_data(const Request &req, const std::string &boundary, const std::string &content_type, size_t content_length, SToken stoken, CToken ctoken, Content content) { for (size_t i = 0; i < req.ranges.size(); i++) { ctoken("--"); stoken(boundary); ctoken("\r\n"); if (!content_type.empty()) { ctoken("Content-Type: "); stoken(content_type); ctoken("\r\n"); } auto offset_and_length = get_range_offset_and_length(req.ranges[i], content_length); ctoken("Content-Range: "); stoken(make_content_range_header_field(offset_and_length, content_length)); ctoken("\r\n"); ctoken("\r\n"); if (!content(offset_and_length.first, offset_and_length.second)) { return false; } ctoken("\r\n"); } ctoken("--"); stoken(boundary); ctoken("--"); return true; } void make_multipart_ranges_data(const Request &req, Response &res, const std::string &boundary, const std::string &content_type, size_t content_length, std::string &data) { process_multipart_ranges_data( req, boundary, content_type, content_length, [&](const std::string &token) { data += token; }, [&](const std::string &token) { data += token; }, [&](size_t offset, size_t length) { assert(offset + length <= content_length); data += res.body.substr(offset, length); return true; }); } size_t get_multipart_ranges_data_length(const Request &req, const std::string &boundary, const std::string &content_type, size_t content_length) { size_t data_length = 0; process_multipart_ranges_data( req, boundary, content_type, content_length, [&](const std::string &token) { data_length += token.size(); }, [&](const std::string &token) { data_length += token.size(); }, [&](size_t /*offset*/, size_t length) { data_length += length; return true; }); return data_length; } template bool write_multipart_ranges_data(Stream &strm, const Request &req, Response &res, const std::string &boundary, const std::string &content_type, size_t content_length, const T &is_shutting_down) { return process_multipart_ranges_data( req, boundary, content_type, content_length, [&](const std::string &token) { strm.write(token); }, [&](const std::string &token) { strm.write(token); }, [&](size_t offset, size_t length) { return write_content(strm, res.content_provider_, offset, length, is_shutting_down); }); } bool expect_content(const Request &req) { if (req.method == "POST" || req.method == "PUT" || req.method == "PATCH" || req.method == "DELETE") { return true; } if (req.has_header("Content-Length") && req.get_header_value_u64("Content-Length") > 0) { return true; } if (is_chunked_transfer_encoding(req.headers)) { return true; } return false; } bool has_crlf(const std::string &s) { auto p = s.c_str(); while (*p) { if (*p == '\r' || *p == '\n') { return true; } p++; } return false; } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT std::string message_digest(const std::string &s, const EVP_MD *algo) { auto context = std::unique_ptr( EVP_MD_CTX_new(), EVP_MD_CTX_free); unsigned int hash_length = 0; unsigned char hash[EVP_MAX_MD_SIZE]; EVP_DigestInit_ex(context.get(), algo, nullptr); EVP_DigestUpdate(context.get(), s.c_str(), s.size()); EVP_DigestFinal_ex(context.get(), hash, &hash_length); std::stringstream ss; for (auto i = 0u; i < hash_length; ++i) { ss << std::hex << std::setw(2) << std::setfill('0') << static_cast(hash[i]); } return ss.str(); } std::string MD5(const std::string &s) { return message_digest(s, EVP_md5()); } std::string SHA_256(const std::string &s) { return message_digest(s, EVP_sha256()); } std::string SHA_512(const std::string &s) { return message_digest(s, EVP_sha512()); } std::pair make_digest_authentication_header( const Request &req, const std::map &auth, size_t cnonce_count, const std::string &cnonce, const std::string &username, const std::string &password, bool is_proxy = false) { std::string nc; { std::stringstream ss; ss << std::setfill('0') << std::setw(8) << std::hex << cnonce_count; nc = ss.str(); } std::string qop; if (auth.find("qop") != auth.end()) { qop = auth.at("qop"); if (qop.find("auth-int") != std::string::npos) { qop = "auth-int"; } else if (qop.find("auth") != std::string::npos) { qop = "auth"; } else { qop.clear(); } } std::string algo = "MD5"; if (auth.find("algorithm") != auth.end()) { algo = auth.at("algorithm"); } std::string response; { auto H = algo == "SHA-256" ? detail::SHA_256 : algo == "SHA-512" ? detail::SHA_512 : detail::MD5; auto A1 = username + ":" + auth.at("realm") + ":" + password; auto A2 = req.method + ":" + req.path; if (qop == "auth-int") { A2 += ":" + H(req.body); } if (qop.empty()) { response = H(H(A1) + ":" + auth.at("nonce") + ":" + H(A2)); } else { response = H(H(A1) + ":" + auth.at("nonce") + ":" + nc + ":" + cnonce + ":" + qop + ":" + H(A2)); } } auto opaque = (auth.find("opaque") != auth.end()) ? auth.at("opaque") : ""; auto field = "Digest username=\"" + username + "\", realm=\"" + auth.at("realm") + "\", nonce=\"" + auth.at("nonce") + "\", uri=\"" + req.path + "\", algorithm=" + algo + (qop.empty() ? ", response=\"" : ", qop=" + qop + ", nc=" + nc + ", cnonce=\"" + cnonce + "\", response=\"") + response + "\"" + (opaque.empty() ? "" : ", opaque=\"" + opaque + "\""); auto key = is_proxy ? "Proxy-Authorization" : "Authorization"; return std::make_pair(key, field); } bool is_ssl_peer_could_be_closed(SSL *ssl, socket_t sock) { detail::set_nonblocking(sock, true); auto se = detail::scope_exit([&]() { detail::set_nonblocking(sock, false); }); char buf[1]; return !SSL_peek(ssl, buf, 1) && SSL_get_error(ssl, 0) == SSL_ERROR_ZERO_RETURN; } #ifdef _WIN32 // NOTE: This code came up with the following stackoverflow post: // https://stackoverflow.com/questions/9507184/can-openssl-on-windows-use-the-system-certificate-store bool load_system_certs_on_windows(X509_STORE *store) { auto hStore = CertOpenSystemStoreW((HCRYPTPROV_LEGACY)NULL, L"ROOT"); if (!hStore) { return false; } auto result = false; PCCERT_CONTEXT pContext = NULL; while ((pContext = CertEnumCertificatesInStore(hStore, pContext)) != nullptr) { auto encoded_cert = static_cast(pContext->pbCertEncoded); auto x509 = d2i_X509(NULL, &encoded_cert, pContext->cbCertEncoded); if (x509) { X509_STORE_add_cert(store, x509); X509_free(x509); result = true; } } CertFreeCertificateContext(pContext); CertCloseStore(hStore, 0); return result; } #elif defined(CPPHTTPLIB_USE_CERTS_FROM_MACOSX_KEYCHAIN) && TARGET_OS_MAC template using CFObjectPtr = std::unique_ptr::type, void (*)(CFTypeRef)>; void cf_object_ptr_deleter(CFTypeRef obj) { if (obj) { CFRelease(obj); } } bool retrieve_certs_from_keychain(CFObjectPtr &certs) { CFStringRef keys[] = {kSecClass, kSecMatchLimit, kSecReturnRef}; CFTypeRef values[] = {kSecClassCertificate, kSecMatchLimitAll, kCFBooleanTrue}; CFObjectPtr query( CFDictionaryCreate(nullptr, reinterpret_cast(keys), values, sizeof(keys) / sizeof(keys[0]), &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks), cf_object_ptr_deleter); if (!query) { return false; } CFTypeRef security_items = nullptr; if (SecItemCopyMatching(query.get(), &security_items) != errSecSuccess || CFArrayGetTypeID() != CFGetTypeID(security_items)) { return false; } certs.reset(reinterpret_cast(security_items)); return true; } bool retrieve_root_certs_from_keychain(CFObjectPtr &certs) { CFArrayRef root_security_items = nullptr; if (SecTrustCopyAnchorCertificates(&root_security_items) != errSecSuccess) { return false; } certs.reset(root_security_items); return true; } bool add_certs_to_x509_store(CFArrayRef certs, X509_STORE *store) { auto result = false; for (auto i = 0; i < CFArrayGetCount(certs); ++i) { const auto cert = reinterpret_cast( CFArrayGetValueAtIndex(certs, i)); if (SecCertificateGetTypeID() != CFGetTypeID(cert)) { continue; } CFDataRef cert_data = nullptr; if (SecItemExport(cert, kSecFormatX509Cert, 0, nullptr, &cert_data) != errSecSuccess) { continue; } CFObjectPtr cert_data_ptr(cert_data, cf_object_ptr_deleter); auto encoded_cert = static_cast( CFDataGetBytePtr(cert_data_ptr.get())); auto x509 = d2i_X509(NULL, &encoded_cert, CFDataGetLength(cert_data_ptr.get())); if (x509) { X509_STORE_add_cert(store, x509); X509_free(x509); result = true; } } return result; } bool load_system_certs_on_macos(X509_STORE *store) { auto result = false; CFObjectPtr certs(nullptr, cf_object_ptr_deleter); if (retrieve_certs_from_keychain(certs) && certs) { result = add_certs_to_x509_store(certs.get(), store); } if (retrieve_root_certs_from_keychain(certs) && certs) { result = add_certs_to_x509_store(certs.get(), store) || result; } return result; } #endif // _WIN32 #endif // CPPHTTPLIB_OPENSSL_SUPPORT #ifdef _WIN32 class WSInit { public: WSInit() { WSADATA wsaData; if (WSAStartup(0x0002, &wsaData) == 0) is_valid_ = true; } ~WSInit() { if (is_valid_) WSACleanup(); } bool is_valid_ = false; }; static WSInit wsinit_; #endif bool parse_www_authenticate(const Response &res, std::map &auth, bool is_proxy) { auto auth_key = is_proxy ? "Proxy-Authenticate" : "WWW-Authenticate"; if (res.has_header(auth_key)) { thread_local auto re = std::regex(R"~((?:(?:,\s*)?(.+?)=(?:"(.*?)"|([^,]*))))~"); auto s = res.get_header_value(auth_key); auto pos = s.find(' '); if (pos != std::string::npos) { auto type = s.substr(0, pos); if (type == "Basic") { return false; } else if (type == "Digest") { s = s.substr(pos + 1); auto beg = std::sregex_iterator(s.begin(), s.end(), re); for (auto i = beg; i != std::sregex_iterator(); ++i) { const auto &m = *i; auto key = s.substr(static_cast(m.position(1)), static_cast(m.length(1))); auto val = m.length(2) > 0 ? s.substr(static_cast(m.position(2)), static_cast(m.length(2))) : s.substr(static_cast(m.position(3)), static_cast(m.length(3))); auth[key] = val; } return true; } } } return false; } class ContentProviderAdapter { public: explicit ContentProviderAdapter( ContentProviderWithoutLength &&content_provider) : content_provider_(content_provider) {} bool operator()(size_t offset, size_t, DataSink &sink) { return content_provider_(offset, sink); } private: ContentProviderWithoutLength content_provider_; }; } // namespace detail std::string hosted_at(const std::string &hostname) { std::vector addrs; hosted_at(hostname, addrs); if (addrs.empty()) { return std::string(); } return addrs[0]; } void hosted_at(const std::string &hostname, std::vector &addrs) { struct addrinfo hints; struct addrinfo *result; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; if (detail::getaddrinfo_with_timeout(hostname.c_str(), nullptr, &hints, &result, 0)) { #if defined __linux__ && !defined __ANDROID__ res_init(); #endif return; } auto se = detail::scope_exit([&] { freeaddrinfo(result); }); for (auto rp = result; rp; rp = rp->ai_next) { const auto &addr = *reinterpret_cast(rp->ai_addr); std::string ip; auto dummy = -1; if (detail::get_ip_and_port(addr, sizeof(struct sockaddr_storage), ip, dummy)) { addrs.push_back(ip); } } } std::string encode_uri_component(const std::string &value) { std::ostringstream escaped; escaped.fill('0'); escaped << std::hex; for (auto c : value) { if (std::isalnum(static_cast(c)) || c == '-' || c == '_' || c == '.' || c == '!' || c == '~' || c == '*' || c == '\'' || c == '(' || c == ')') { escaped << c; } else { escaped << std::uppercase; escaped << '%' << std::setw(2) << static_cast(static_cast(c)); escaped << std::nouppercase; } } return escaped.str(); } std::string encode_uri(const std::string &value) { std::ostringstream escaped; escaped.fill('0'); escaped << std::hex; for (auto c : value) { if (std::isalnum(static_cast(c)) || c == '-' || c == '_' || c == '.' || c == '!' || c == '~' || c == '*' || c == '\'' || c == '(' || c == ')' || c == ';' || c == '/' || c == '?' || c == ':' || c == '@' || c == '&' || c == '=' || c == '+' || c == '$' || c == ',' || c == '#') { escaped << c; } else { escaped << std::uppercase; escaped << '%' << std::setw(2) << static_cast(static_cast(c)); escaped << std::nouppercase; } } return escaped.str(); } std::string decode_uri_component(const std::string &value) { std::string result; for (size_t i = 0; i < value.size(); i++) { if (value[i] == '%' && i + 2 < value.size()) { auto val = 0; if (detail::from_hex_to_i(value, i + 1, 2, val)) { result += static_cast(val); i += 2; } else { result += value[i]; } } else { result += value[i]; } } return result; } std::string decode_uri(const std::string &value) { std::string result; for (size_t i = 0; i < value.size(); i++) { if (value[i] == '%' && i + 2 < value.size()) { auto val = 0; if (detail::from_hex_to_i(value, i + 1, 2, val)) { result += static_cast(val); i += 2; } else { result += value[i]; } } else { result += value[i]; } } return result; } std::string encode_path_component(const std::string &component) { std::string result; result.reserve(component.size() * 3); for (size_t i = 0; i < component.size(); i++) { auto c = static_cast(component[i]); // Unreserved characters per RFC 3986: ALPHA / DIGIT / "-" / "." / "_" / "~" if (std::isalnum(c) || c == '-' || c == '.' || c == '_' || c == '~') { result += static_cast(c); } // Path-safe sub-delimiters: "!" / "$" / "&" / "'" / "(" / ")" / "*" / "+" / // "," / ";" / "=" else if (c == '!' || c == '$' || c == '&' || c == '\'' || c == '(' || c == ')' || c == '*' || c == '+' || c == ',' || c == ';' || c == '=') { result += static_cast(c); } // Colon is allowed in path segments except first segment else if (c == ':') { result += static_cast(c); } // @ is allowed in path else if (c == '@') { result += static_cast(c); } else { result += '%'; char hex[3]; snprintf(hex, sizeof(hex), "%02X", c); result.append(hex, 2); } } return result; } std::string decode_path_component(const std::string &component) { std::string result; result.reserve(component.size()); for (size_t i = 0; i < component.size(); i++) { if (component[i] == '%' && i + 1 < component.size()) { if (component[i + 1] == 'u') { // Unicode %uXXXX encoding auto val = 0; if (detail::from_hex_to_i(component, i + 2, 4, val)) { // 4 digits Unicode codes char buff[4]; size_t len = detail::to_utf8(val, buff); if (len > 0) { result.append(buff, len); } i += 5; // 'u0000' } else { result += component[i]; } } else { // Standard %XX encoding auto val = 0; if (detail::from_hex_to_i(component, i + 1, 2, val)) { // 2 digits hex codes result += static_cast(val); i += 2; // 'XX' } else { result += component[i]; } } } else { result += component[i]; } } return result; } std::string encode_query_component(const std::string &component, bool space_as_plus) { std::string result; result.reserve(component.size() * 3); for (size_t i = 0; i < component.size(); i++) { auto c = static_cast(component[i]); // Unreserved characters per RFC 3986 if (std::isalnum(c) || c == '-' || c == '.' || c == '_' || c == '~') { result += static_cast(c); } // Space handling else if (c == ' ') { if (space_as_plus) { result += '+'; } else { result += "%20"; } } // Plus sign handling else if (c == '+') { if (space_as_plus) { result += "%2B"; } else { result += static_cast(c); } } // Query-safe sub-delimiters (excluding & and = which are query delimiters) else if (c == '!' || c == '$' || c == '\'' || c == '(' || c == ')' || c == '*' || c == ',' || c == ';') { result += static_cast(c); } // Colon and @ are allowed in query else if (c == ':' || c == '@') { result += static_cast(c); } // Forward slash is allowed in query values else if (c == '/') { result += static_cast(c); } // Question mark is allowed in query values (after first ?) else if (c == '?') { result += static_cast(c); } else { result += '%'; char hex[3]; snprintf(hex, sizeof(hex), "%02X", c); result.append(hex, 2); } } return result; } std::string decode_query_component(const std::string &component, bool plus_as_space) { std::string result; result.reserve(component.size()); for (size_t i = 0; i < component.size(); i++) { if (component[i] == '%' && i + 2 < component.size()) { std::string hex = component.substr(i + 1, 2); char *end; unsigned long value = std::strtoul(hex.c_str(), &end, 16); if (end == hex.c_str() + 2) { result += static_cast(value); i += 2; } else { result += component[i]; } } else if (component[i] == '+' && plus_as_space) { result += ' '; // + becomes space in form-urlencoded } else { result += component[i]; } } return result; } std::string append_query_params(const std::string &path, const Params ¶ms) { std::string path_with_query = path; thread_local const std::regex re("[^?]+\\?.*"); auto delm = std::regex_match(path, re) ? '&' : '?'; path_with_query += delm + detail::params_to_query_str(params); return path_with_query; } // Header utilities std::pair make_range_header(const Ranges &ranges) { std::string field = "bytes="; auto i = 0; for (const auto &r : ranges) { if (i != 0) { field += ", "; } if (r.first != -1) { field += std::to_string(r.first); } field += '-'; if (r.second != -1) { field += std::to_string(r.second); } i++; } return std::make_pair("Range", std::move(field)); } std::pair make_basic_authentication_header(const std::string &username, const std::string &password, bool is_proxy) { auto field = "Basic " + detail::base64_encode(username + ":" + password); auto key = is_proxy ? "Proxy-Authorization" : "Authorization"; return std::make_pair(key, std::move(field)); } std::pair make_bearer_token_authentication_header(const std::string &token, bool is_proxy = false) { auto field = "Bearer " + token; auto key = is_proxy ? "Proxy-Authorization" : "Authorization"; return std::make_pair(key, std::move(field)); } // Request implementation bool Request::has_header(const std::string &key) const { return detail::has_header(headers, key); } std::string Request::get_header_value(const std::string &key, const char *def, size_t id) const { return detail::get_header_value(headers, key, def, id); } size_t Request::get_header_value_count(const std::string &key) const { auto r = headers.equal_range(key); return static_cast(std::distance(r.first, r.second)); } void Request::set_header(const std::string &key, const std::string &val) { if (detail::fields::is_field_name(key) && detail::fields::is_field_value(val)) { headers.emplace(key, val); } } bool Request::has_trailer(const std::string &key) const { return trailers.find(key) != trailers.end(); } std::string Request::get_trailer_value(const std::string &key, size_t id) const { auto rng = trailers.equal_range(key); auto it = rng.first; std::advance(it, static_cast(id)); if (it != rng.second) { return it->second; } return std::string(); } size_t Request::get_trailer_value_count(const std::string &key) const { auto r = trailers.equal_range(key); return static_cast(std::distance(r.first, r.second)); } bool Request::has_param(const std::string &key) const { return params.find(key) != params.end(); } std::string Request::get_param_value(const std::string &key, size_t id) const { auto rng = params.equal_range(key); auto it = rng.first; std::advance(it, static_cast(id)); if (it != rng.second) { return it->second; } return std::string(); } size_t Request::get_param_value_count(const std::string &key) const { auto r = params.equal_range(key); return static_cast(std::distance(r.first, r.second)); } bool Request::is_multipart_form_data() const { const auto &content_type = get_header_value("Content-Type"); return !content_type.rfind("multipart/form-data", 0); } // Multipart FormData implementation std::string MultipartFormData::get_field(const std::string &key, size_t id) const { auto rng = fields.equal_range(key); auto it = rng.first; std::advance(it, static_cast(id)); if (it != rng.second) { return it->second.content; } return std::string(); } std::vector MultipartFormData::get_fields(const std::string &key) const { std::vector values; auto rng = fields.equal_range(key); for (auto it = rng.first; it != rng.second; it++) { values.push_back(it->second.content); } return values; } bool MultipartFormData::has_field(const std::string &key) const { return fields.find(key) != fields.end(); } size_t MultipartFormData::get_field_count(const std::string &key) const { auto r = fields.equal_range(key); return static_cast(std::distance(r.first, r.second)); } FormData MultipartFormData::get_file(const std::string &key, size_t id) const { auto rng = files.equal_range(key); auto it = rng.first; std::advance(it, static_cast(id)); if (it != rng.second) { return it->second; } return FormData(); } std::vector MultipartFormData::get_files(const std::string &key) const { std::vector values; auto rng = files.equal_range(key); for (auto it = rng.first; it != rng.second; it++) { values.push_back(it->second); } return values; } bool MultipartFormData::has_file(const std::string &key) const { return files.find(key) != files.end(); } size_t MultipartFormData::get_file_count(const std::string &key) const { auto r = files.equal_range(key); return static_cast(std::distance(r.first, r.second)); } // Response implementation bool Response::has_header(const std::string &key) const { return headers.find(key) != headers.end(); } std::string Response::get_header_value(const std::string &key, const char *def, size_t id) const { return detail::get_header_value(headers, key, def, id); } size_t Response::get_header_value_count(const std::string &key) const { auto r = headers.equal_range(key); return static_cast(std::distance(r.first, r.second)); } void Response::set_header(const std::string &key, const std::string &val) { if (detail::fields::is_field_name(key) && detail::fields::is_field_value(val)) { headers.emplace(key, val); } } bool Response::has_trailer(const std::string &key) const { return trailers.find(key) != trailers.end(); } std::string Response::get_trailer_value(const std::string &key, size_t id) const { auto rng = trailers.equal_range(key); auto it = rng.first; std::advance(it, static_cast(id)); if (it != rng.second) { return it->second; } return std::string(); } size_t Response::get_trailer_value_count(const std::string &key) const { auto r = trailers.equal_range(key); return static_cast(std::distance(r.first, r.second)); } void Response::set_redirect(const std::string &url, int stat) { if (detail::fields::is_field_value(url)) { set_header("Location", url); if (300 <= stat && stat < 400) { this->status = stat; } else { this->status = StatusCode::Found_302; } } } void Response::set_content(const char *s, size_t n, const std::string &content_type) { body.assign(s, n); auto rng = headers.equal_range("Content-Type"); headers.erase(rng.first, rng.second); set_header("Content-Type", content_type); } void Response::set_content(const std::string &s, const std::string &content_type) { set_content(s.data(), s.size(), content_type); } void Response::set_content(std::string &&s, const std::string &content_type) { body = std::move(s); auto rng = headers.equal_range("Content-Type"); headers.erase(rng.first, rng.second); set_header("Content-Type", content_type); } void Response::set_content_provider( size_t in_length, const std::string &content_type, ContentProvider provider, ContentProviderResourceReleaser resource_releaser) { set_header("Content-Type", content_type); content_length_ = in_length; if (in_length > 0) { content_provider_ = std::move(provider); } content_provider_resource_releaser_ = std::move(resource_releaser); is_chunked_content_provider_ = false; } void Response::set_content_provider( const std::string &content_type, ContentProviderWithoutLength provider, ContentProviderResourceReleaser resource_releaser) { set_header("Content-Type", content_type); content_length_ = 0; content_provider_ = detail::ContentProviderAdapter(std::move(provider)); content_provider_resource_releaser_ = std::move(resource_releaser); is_chunked_content_provider_ = false; } void Response::set_chunked_content_provider( const std::string &content_type, ContentProviderWithoutLength provider, ContentProviderResourceReleaser resource_releaser) { set_header("Content-Type", content_type); content_length_ = 0; content_provider_ = detail::ContentProviderAdapter(std::move(provider)); content_provider_resource_releaser_ = std::move(resource_releaser); is_chunked_content_provider_ = true; } void Response::set_file_content(const std::string &path, const std::string &content_type) { file_content_path_ = path; file_content_content_type_ = content_type; } void Response::set_file_content(const std::string &path) { file_content_path_ = path; } // Result implementation bool Result::has_request_header(const std::string &key) const { return request_headers_.find(key) != request_headers_.end(); } std::string Result::get_request_header_value(const std::string &key, const char *def, size_t id) const { return detail::get_header_value(request_headers_, key, def, id); } size_t Result::get_request_header_value_count(const std::string &key) const { auto r = request_headers_.equal_range(key); return static_cast(std::distance(r.first, r.second)); } // Stream implementation ssize_t Stream::write(const char *ptr) { return write(ptr, strlen(ptr)); } ssize_t Stream::write(const std::string &s) { return write(s.data(), s.size()); } namespace detail { void calc_actual_timeout(time_t max_timeout_msec, time_t duration_msec, time_t timeout_sec, time_t timeout_usec, time_t &actual_timeout_sec, time_t &actual_timeout_usec) { auto timeout_msec = (timeout_sec * 1000) + (timeout_usec / 1000); auto actual_timeout_msec = (std::min)(max_timeout_msec - duration_msec, timeout_msec); if (actual_timeout_msec < 0) { actual_timeout_msec = 0; } actual_timeout_sec = actual_timeout_msec / 1000; actual_timeout_usec = (actual_timeout_msec % 1000) * 1000; } // Socket stream implementation SocketStream::SocketStream( socket_t sock, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, time_t max_timeout_msec, std::chrono::time_point start_time) : sock_(sock), read_timeout_sec_(read_timeout_sec), read_timeout_usec_(read_timeout_usec), write_timeout_sec_(write_timeout_sec), write_timeout_usec_(write_timeout_usec), max_timeout_msec_(max_timeout_msec), start_time_(start_time), read_buff_(read_buff_size_, 0) {} SocketStream::~SocketStream() = default; bool SocketStream::is_readable() const { return read_buff_off_ < read_buff_content_size_; } bool SocketStream::wait_readable() const { if (max_timeout_msec_ <= 0) { return select_read(sock_, read_timeout_sec_, read_timeout_usec_) > 0; } time_t read_timeout_sec; time_t read_timeout_usec; calc_actual_timeout(max_timeout_msec_, duration(), read_timeout_sec_, read_timeout_usec_, read_timeout_sec, read_timeout_usec); return select_read(sock_, read_timeout_sec, read_timeout_usec) > 0; } bool SocketStream::wait_writable() const { return select_write(sock_, write_timeout_sec_, write_timeout_usec_) > 0 && is_socket_alive(sock_); } ssize_t SocketStream::read(char *ptr, size_t size) { #ifdef _WIN32 size = (std::min)(size, static_cast((std::numeric_limits::max)())); #else size = (std::min)(size, static_cast((std::numeric_limits::max)())); #endif if (read_buff_off_ < read_buff_content_size_) { auto remaining_size = read_buff_content_size_ - read_buff_off_; if (size <= remaining_size) { memcpy(ptr, read_buff_.data() + read_buff_off_, size); read_buff_off_ += size; return static_cast(size); } else { memcpy(ptr, read_buff_.data() + read_buff_off_, remaining_size); read_buff_off_ += remaining_size; return static_cast(remaining_size); } } if (!wait_readable()) { return -1; } read_buff_off_ = 0; read_buff_content_size_ = 0; if (size < read_buff_size_) { auto n = read_socket(sock_, read_buff_.data(), read_buff_size_, CPPHTTPLIB_RECV_FLAGS); if (n <= 0) { return n; } else if (n <= static_cast(size)) { memcpy(ptr, read_buff_.data(), static_cast(n)); return n; } else { memcpy(ptr, read_buff_.data(), size); read_buff_off_ = size; read_buff_content_size_ = static_cast(n); return static_cast(size); } } else { return read_socket(sock_, ptr, size, CPPHTTPLIB_RECV_FLAGS); } } ssize_t SocketStream::write(const char *ptr, size_t size) { if (!wait_writable()) { return -1; } #if defined(_WIN32) && !defined(_WIN64) size = (std::min)(size, static_cast((std::numeric_limits::max)())); #endif return send_socket(sock_, ptr, size, CPPHTTPLIB_SEND_FLAGS); } void SocketStream::get_remote_ip_and_port(std::string &ip, int &port) const { return detail::get_remote_ip_and_port(sock_, ip, port); } void SocketStream::get_local_ip_and_port(std::string &ip, int &port) const { return detail::get_local_ip_and_port(sock_, ip, port); } socket_t SocketStream::socket() const { return sock_; } time_t SocketStream::duration() const { return std::chrono::duration_cast( std::chrono::steady_clock::now() - start_time_) .count(); } // Buffer stream implementation bool BufferStream::is_readable() const { return true; } bool BufferStream::wait_readable() const { return true; } bool BufferStream::wait_writable() const { return true; } ssize_t BufferStream::read(char *ptr, size_t size) { #if defined(_MSC_VER) && _MSC_VER < 1910 auto len_read = buffer._Copy_s(ptr, size, size, position); #else auto len_read = buffer.copy(ptr, size, position); #endif position += static_cast(len_read); return static_cast(len_read); } ssize_t BufferStream::write(const char *ptr, size_t size) { buffer.append(ptr, size); return static_cast(size); } void BufferStream::get_remote_ip_and_port(std::string & /*ip*/, int & /*port*/) const {} void BufferStream::get_local_ip_and_port(std::string & /*ip*/, int & /*port*/) const {} socket_t BufferStream::socket() const { return 0; } time_t BufferStream::duration() const { return 0; } const std::string &BufferStream::get_buffer() const { return buffer; } PathParamsMatcher::PathParamsMatcher(const std::string &pattern) : MatcherBase(pattern) { constexpr const char marker[] = "/:"; // One past the last ending position of a path param substring std::size_t last_param_end = 0; #ifndef CPPHTTPLIB_NO_EXCEPTIONS // Needed to ensure that parameter names are unique during matcher // construction // If exceptions are disabled, only last duplicate path // parameter will be set std::unordered_set param_name_set; #endif while (true) { const auto marker_pos = pattern.find( marker, last_param_end == 0 ? last_param_end : last_param_end - 1); if (marker_pos == std::string::npos) { break; } static_fragments_.push_back( pattern.substr(last_param_end, marker_pos - last_param_end + 1)); const auto param_name_start = marker_pos + str_len(marker); auto sep_pos = pattern.find(separator, param_name_start); if (sep_pos == std::string::npos) { sep_pos = pattern.length(); } auto param_name = pattern.substr(param_name_start, sep_pos - param_name_start); #ifndef CPPHTTPLIB_NO_EXCEPTIONS if (param_name_set.find(param_name) != param_name_set.cend()) { std::string msg = "Encountered path parameter '" + param_name + "' multiple times in route pattern '" + pattern + "'."; throw std::invalid_argument(msg); } #endif param_names_.push_back(std::move(param_name)); last_param_end = sep_pos + 1; } if (last_param_end < pattern.length()) { static_fragments_.push_back(pattern.substr(last_param_end)); } } bool PathParamsMatcher::match(Request &request) const { request.matches = std::smatch(); request.path_params.clear(); request.path_params.reserve(param_names_.size()); // One past the position at which the path matched the pattern last time std::size_t starting_pos = 0; for (size_t i = 0; i < static_fragments_.size(); ++i) { const auto &fragment = static_fragments_[i]; if (starting_pos + fragment.length() > request.path.length()) { return false; } // Avoid unnecessary allocation by using strncmp instead of substr + // comparison if (std::strncmp(request.path.c_str() + starting_pos, fragment.c_str(), fragment.length()) != 0) { return false; } starting_pos += fragment.length(); // Should only happen when we have a static fragment after a param // Example: '/users/:id/subscriptions' // The 'subscriptions' fragment here does not have a corresponding param if (i >= param_names_.size()) { continue; } auto sep_pos = request.path.find(separator, starting_pos); if (sep_pos == std::string::npos) { sep_pos = request.path.length(); } const auto ¶m_name = param_names_[i]; request.path_params.emplace( param_name, request.path.substr(starting_pos, sep_pos - starting_pos)); // Mark everything up to '/' as matched starting_pos = sep_pos + 1; } // Returns false if the path is longer than the pattern return starting_pos >= request.path.length(); } bool RegexMatcher::match(Request &request) const { request.path_params.clear(); return std::regex_match(request.path, request.matches, regex_); } std::string make_host_and_port_string(const std::string &host, int port, bool is_ssl) { std::string result; // Enclose IPv6 address in brackets (but not if already enclosed) if (host.find(':') == std::string::npos || (!host.empty() && host[0] == '[')) { // IPv4, hostname, or already bracketed IPv6 result = host; } else { // IPv6 address without brackets result = "[" + host + "]"; } // Append port if not default if ((!is_ssl && port == 80) || (is_ssl && port == 443)) { ; // do nothing } else { result += ":" + std::to_string(port); } return result; } } // namespace detail // HTTP server implementation Server::Server() : new_task_queue( [] { return new ThreadPool(CPPHTTPLIB_THREAD_POOL_COUNT); }) { #ifndef _WIN32 signal(SIGPIPE, SIG_IGN); #endif } Server::~Server() = default; std::unique_ptr Server::make_matcher(const std::string &pattern) { if (pattern.find("/:") != std::string::npos) { return detail::make_unique(pattern); } else { return detail::make_unique(pattern); } } Server &Server::Get(const std::string &pattern, Handler handler) { get_handlers_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Post(const std::string &pattern, Handler handler) { post_handlers_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Post(const std::string &pattern, HandlerWithContentReader handler) { post_handlers_for_content_reader_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Put(const std::string &pattern, Handler handler) { put_handlers_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Put(const std::string &pattern, HandlerWithContentReader handler) { put_handlers_for_content_reader_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Patch(const std::string &pattern, Handler handler) { patch_handlers_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Patch(const std::string &pattern, HandlerWithContentReader handler) { patch_handlers_for_content_reader_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Delete(const std::string &pattern, Handler handler) { delete_handlers_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Delete(const std::string &pattern, HandlerWithContentReader handler) { delete_handlers_for_content_reader_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } Server &Server::Options(const std::string &pattern, Handler handler) { options_handlers_.emplace_back(make_matcher(pattern), std::move(handler)); return *this; } bool Server::set_base_dir(const std::string &dir, const std::string &mount_point) { return set_mount_point(mount_point, dir); } bool Server::set_mount_point(const std::string &mount_point, const std::string &dir, Headers headers) { detail::FileStat stat(dir); if (stat.is_dir()) { std::string mnt = !mount_point.empty() ? mount_point : "/"; if (!mnt.empty() && mnt[0] == '/') { base_dirs_.push_back({mnt, dir, std::move(headers)}); return true; } } return false; } bool Server::remove_mount_point(const std::string &mount_point) { for (auto it = base_dirs_.begin(); it != base_dirs_.end(); ++it) { if (it->mount_point == mount_point) { base_dirs_.erase(it); return true; } } return false; } Server & Server::set_file_extension_and_mimetype_mapping(const std::string &ext, const std::string &mime) { file_extension_and_mimetype_map_[ext] = mime; return *this; } Server &Server::set_default_file_mimetype(const std::string &mime) { default_file_mimetype_ = mime; return *this; } Server &Server::set_file_request_handler(Handler handler) { file_request_handler_ = std::move(handler); return *this; } Server &Server::set_error_handler_core(HandlerWithResponse handler, std::true_type) { error_handler_ = std::move(handler); return *this; } Server &Server::set_error_handler_core(Handler handler, std::false_type) { error_handler_ = [handler](const Request &req, Response &res) { handler(req, res); return HandlerResponse::Handled; }; return *this; } Server &Server::set_exception_handler(ExceptionHandler handler) { exception_handler_ = std::move(handler); return *this; } Server &Server::set_pre_routing_handler(HandlerWithResponse handler) { pre_routing_handler_ = std::move(handler); return *this; } Server &Server::set_post_routing_handler(Handler handler) { post_routing_handler_ = std::move(handler); return *this; } Server &Server::set_pre_request_handler(HandlerWithResponse handler) { pre_request_handler_ = std::move(handler); return *this; } Server &Server::set_logger(Logger logger) { logger_ = std::move(logger); return *this; } Server &Server::set_error_logger(ErrorLogger error_logger) { error_logger_ = std::move(error_logger); return *this; } Server &Server::set_pre_compression_logger(Logger logger) { pre_compression_logger_ = std::move(logger); return *this; } Server & Server::set_expect_100_continue_handler(Expect100ContinueHandler handler) { expect_100_continue_handler_ = std::move(handler); return *this; } Server &Server::set_address_family(int family) { address_family_ = family; return *this; } Server &Server::set_tcp_nodelay(bool on) { tcp_nodelay_ = on; return *this; } Server &Server::set_ipv6_v6only(bool on) { ipv6_v6only_ = on; return *this; } Server &Server::set_socket_options(SocketOptions socket_options) { socket_options_ = std::move(socket_options); return *this; } Server &Server::set_default_headers(Headers headers) { default_headers_ = std::move(headers); return *this; } Server &Server::set_header_writer( std::function const &writer) { header_writer_ = writer; return *this; } Server & Server::set_trusted_proxies(const std::vector &proxies) { trusted_proxies_ = proxies; return *this; } Server &Server::set_keep_alive_max_count(size_t count) { keep_alive_max_count_ = count; return *this; } Server &Server::set_keep_alive_timeout(time_t sec) { keep_alive_timeout_sec_ = sec; return *this; } Server &Server::set_read_timeout(time_t sec, time_t usec) { read_timeout_sec_ = sec; read_timeout_usec_ = usec; return *this; } Server &Server::set_write_timeout(time_t sec, time_t usec) { write_timeout_sec_ = sec; write_timeout_usec_ = usec; return *this; } Server &Server::set_idle_interval(time_t sec, time_t usec) { idle_interval_sec_ = sec; idle_interval_usec_ = usec; return *this; } Server &Server::set_payload_max_length(size_t length) { payload_max_length_ = length; return *this; } bool Server::bind_to_port(const std::string &host, int port, int socket_flags) { auto ret = bind_internal(host, port, socket_flags); if (ret == -1) { is_decommissioned = true; } return ret >= 0; } int Server::bind_to_any_port(const std::string &host, int socket_flags) { auto ret = bind_internal(host, 0, socket_flags); if (ret == -1) { is_decommissioned = true; } return ret; } bool Server::listen_after_bind() { return listen_internal(); } bool Server::listen(const std::string &host, int port, int socket_flags) { return bind_to_port(host, port, socket_flags) && listen_internal(); } bool Server::is_running() const { return is_running_; } void Server::wait_until_ready() const { while (!is_running_ && !is_decommissioned) { std::this_thread::sleep_for(std::chrono::milliseconds{1}); } } void Server::stop() { if (is_running_) { assert(svr_sock_ != INVALID_SOCKET); std::atomic sock(svr_sock_.exchange(INVALID_SOCKET)); detail::shutdown_socket(sock); detail::close_socket(sock); } is_decommissioned = false; } void Server::decommission() { is_decommissioned = true; } bool Server::parse_request_line(const char *s, Request &req) const { auto len = strlen(s); if (len < 2 || s[len - 2] != '\r' || s[len - 1] != '\n') { return false; } len -= 2; { size_t count = 0; detail::split(s, s + len, ' ', [&](const char *b, const char *e) { switch (count) { case 0: req.method = std::string(b, e); break; case 1: req.target = std::string(b, e); break; case 2: req.version = std::string(b, e); break; default: break; } count++; }); if (count != 3) { return false; } } thread_local const std::set methods{ "GET", "HEAD", "POST", "PUT", "DELETE", "CONNECT", "OPTIONS", "TRACE", "PATCH", "PRI"}; if (methods.find(req.method) == methods.end()) { output_error_log(Error::InvalidHTTPMethod, &req); return false; } if (req.version != "HTTP/1.1" && req.version != "HTTP/1.0") { output_error_log(Error::InvalidHTTPVersion, &req); return false; } { // Skip URL fragment for (size_t i = 0; i < req.target.size(); i++) { if (req.target[i] == '#') { req.target.erase(i); break; } } detail::divide(req.target, '?', [&](const char *lhs_data, std::size_t lhs_size, const char *rhs_data, std::size_t rhs_size) { req.path = decode_path_component(std::string(lhs_data, lhs_size)); detail::parse_query_text(rhs_data, rhs_size, req.params); }); } return true; } bool Server::write_response(Stream &strm, bool close_connection, Request &req, Response &res) { // NOTE: `req.ranges` should be empty, otherwise it will be applied // incorrectly to the error content. req.ranges.clear(); return write_response_core(strm, close_connection, req, res, false); } bool Server::write_response_with_content(Stream &strm, bool close_connection, const Request &req, Response &res) { return write_response_core(strm, close_connection, req, res, true); } bool Server::write_response_core(Stream &strm, bool close_connection, const Request &req, Response &res, bool need_apply_ranges) { assert(res.status != -1); if (400 <= res.status && error_handler_ && error_handler_(req, res) == HandlerResponse::Handled) { need_apply_ranges = true; } std::string content_type; std::string boundary; if (need_apply_ranges) { apply_ranges(req, res, content_type, boundary); } // Prepare additional headers if (close_connection || req.get_header_value("Connection") == "close") { res.set_header("Connection", "close"); } else { std::string s = "timeout="; s += std::to_string(keep_alive_timeout_sec_); s += ", max="; s += std::to_string(keep_alive_max_count_); res.set_header("Keep-Alive", s); } if ((!res.body.empty() || res.content_length_ > 0 || res.content_provider_) && !res.has_header("Content-Type")) { res.set_header("Content-Type", "text/plain"); } if (res.body.empty() && !res.content_length_ && !res.content_provider_ && !res.has_header("Content-Length")) { res.set_header("Content-Length", "0"); } if (req.method == "HEAD" && !res.has_header("Accept-Ranges")) { res.set_header("Accept-Ranges", "bytes"); } if (post_routing_handler_) { post_routing_handler_(req, res); } // Response line and headers { detail::BufferStream bstrm; if (!detail::write_response_line(bstrm, res.status)) { return false; } if (!header_writer_(bstrm, res.headers)) { return false; } // Flush buffer auto &data = bstrm.get_buffer(); detail::write_data(strm, data.data(), data.size()); } // Body auto ret = true; if (req.method != "HEAD") { if (!res.body.empty()) { if (!detail::write_data(strm, res.body.data(), res.body.size())) { ret = false; } } else if (res.content_provider_) { if (write_content_with_provider(strm, req, res, boundary, content_type)) { res.content_provider_success_ = true; } else { ret = false; } } } // Log output_log(req, res); return ret; } bool Server::write_content_with_provider(Stream &strm, const Request &req, Response &res, const std::string &boundary, const std::string &content_type) { auto is_shutting_down = [this]() { return this->svr_sock_ == INVALID_SOCKET; }; if (res.content_length_ > 0) { if (req.ranges.empty()) { return detail::write_content(strm, res.content_provider_, 0, res.content_length_, is_shutting_down); } else if (req.ranges.size() == 1) { auto offset_and_length = detail::get_range_offset_and_length( req.ranges[0], res.content_length_); return detail::write_content(strm, res.content_provider_, offset_and_length.first, offset_and_length.second, is_shutting_down); } else { return detail::write_multipart_ranges_data( strm, req, res, boundary, content_type, res.content_length_, is_shutting_down); } } else { if (res.is_chunked_content_provider_) { auto type = detail::encoding_type(req, res); std::unique_ptr compressor; if (type == detail::EncodingType::Gzip) { #ifdef CPPHTTPLIB_ZLIB_SUPPORT compressor = detail::make_unique(); #endif } else if (type == detail::EncodingType::Brotli) { #ifdef CPPHTTPLIB_BROTLI_SUPPORT compressor = detail::make_unique(); #endif } else if (type == detail::EncodingType::Zstd) { #ifdef CPPHTTPLIB_ZSTD_SUPPORT compressor = detail::make_unique(); #endif } else { compressor = detail::make_unique(); } assert(compressor != nullptr); return detail::write_content_chunked(strm, res.content_provider_, is_shutting_down, *compressor); } else { return detail::write_content_without_length(strm, res.content_provider_, is_shutting_down); } } } bool Server::read_content(Stream &strm, Request &req, Response &res) { FormFields::iterator cur_field; FormFiles::iterator cur_file; auto is_text_field = false; size_t count = 0; if (read_content_core( strm, req, res, // Regular [&](const char *buf, size_t n) { if (req.body.size() + n > req.body.max_size()) { return false; } req.body.append(buf, n); return true; }, // Multipart FormData [&](const FormData &file) { if (count++ == CPPHTTPLIB_MULTIPART_FORM_DATA_FILE_MAX_COUNT) { output_error_log(Error::TooManyFormDataFiles, &req); return false; } if (file.filename.empty()) { cur_field = req.form.fields.emplace( file.name, FormField{file.name, file.content, file.headers}); is_text_field = true; } else { cur_file = req.form.files.emplace(file.name, file); is_text_field = false; } return true; }, [&](const char *buf, size_t n) { if (is_text_field) { auto &content = cur_field->second.content; if (content.size() + n > content.max_size()) { return false; } content.append(buf, n); } else { auto &content = cur_file->second.content; if (content.size() + n > content.max_size()) { return false; } content.append(buf, n); } return true; })) { const auto &content_type = req.get_header_value("Content-Type"); if (!content_type.find("application/x-www-form-urlencoded")) { if (req.body.size() > CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH) { res.status = StatusCode::PayloadTooLarge_413; // NOTE: should be 414? output_error_log(Error::ExceedMaxPayloadSize, &req); return false; } detail::parse_query_text(req.body, req.params); } return true; } return false; } bool Server::read_content_with_content_receiver( Stream &strm, Request &req, Response &res, ContentReceiver receiver, FormDataHeader multipart_header, ContentReceiver multipart_receiver) { return read_content_core(strm, req, res, std::move(receiver), std::move(multipart_header), std::move(multipart_receiver)); } bool Server::read_content_core( Stream &strm, Request &req, Response &res, ContentReceiver receiver, FormDataHeader multipart_header, ContentReceiver multipart_receiver) const { detail::FormDataParser multipart_form_data_parser; ContentReceiverWithProgress out; if (req.is_multipart_form_data()) { const auto &content_type = req.get_header_value("Content-Type"); std::string boundary; if (!detail::parse_multipart_boundary(content_type, boundary)) { res.status = StatusCode::BadRequest_400; output_error_log(Error::MultipartParsing, &req); return false; } multipart_form_data_parser.set_boundary(std::move(boundary)); out = [&](const char *buf, size_t n, size_t /*off*/, size_t /*len*/) { return multipart_form_data_parser.parse(buf, n, multipart_header, multipart_receiver); }; } else { out = [receiver](const char *buf, size_t n, size_t /*off*/, size_t /*len*/) { return receiver(buf, n); }; } if (req.method == "DELETE" && !req.has_header("Content-Length")) { return true; } if (!detail::read_content(strm, req, payload_max_length_, res.status, nullptr, out, true)) { return false; } if (req.is_multipart_form_data()) { if (!multipart_form_data_parser.is_valid()) { res.status = StatusCode::BadRequest_400; output_error_log(Error::MultipartParsing, &req); return false; } } return true; } bool Server::handle_file_request(const Request &req, Response &res) { for (const auto &entry : base_dirs_) { // Prefix match if (!req.path.compare(0, entry.mount_point.size(), entry.mount_point)) { std::string sub_path = "/" + req.path.substr(entry.mount_point.size()); if (detail::is_valid_path(sub_path)) { auto path = entry.base_dir + sub_path; if (path.back() == '/') { path += "index.html"; } detail::FileStat stat(path); if (stat.is_dir()) { res.set_redirect(sub_path + "/", StatusCode::MovedPermanently_301); return true; } if (stat.is_file()) { for (const auto &kv : entry.headers) { res.set_header(kv.first, kv.second); } auto mm = std::make_shared(path.c_str()); if (!mm->is_open()) { output_error_log(Error::OpenFile, &req); return false; } res.set_content_provider( mm->size(), detail::find_content_type(path, file_extension_and_mimetype_map_, default_file_mimetype_), [mm](size_t offset, size_t length, DataSink &sink) -> bool { sink.write(mm->data() + offset, length); return true; }); if (req.method != "HEAD" && file_request_handler_) { file_request_handler_(req, res); } return true; } else { output_error_log(Error::OpenFile, &req); } } } } return false; } socket_t Server::create_server_socket(const std::string &host, int port, int socket_flags, SocketOptions socket_options) const { return detail::create_socket( host, std::string(), port, address_family_, socket_flags, tcp_nodelay_, ipv6_v6only_, std::move(socket_options), [&](socket_t sock, struct addrinfo &ai, bool & /*quit*/) -> bool { if (::bind(sock, ai.ai_addr, static_cast(ai.ai_addrlen))) { output_error_log(Error::BindIPAddress, nullptr); return false; } if (::listen(sock, CPPHTTPLIB_LISTEN_BACKLOG)) { output_error_log(Error::Listen, nullptr); return false; } return true; }); } int Server::bind_internal(const std::string &host, int port, int socket_flags) { if (is_decommissioned) { return -1; } if (!is_valid()) { return -1; } svr_sock_ = create_server_socket(host, port, socket_flags, socket_options_); if (svr_sock_ == INVALID_SOCKET) { return -1; } if (port == 0) { struct sockaddr_storage addr; socklen_t addr_len = sizeof(addr); if (getsockname(svr_sock_, reinterpret_cast(&addr), &addr_len) == -1) { output_error_log(Error::GetSockName, nullptr); return -1; } if (addr.ss_family == AF_INET) { return ntohs(reinterpret_cast(&addr)->sin_port); } else if (addr.ss_family == AF_INET6) { return ntohs(reinterpret_cast(&addr)->sin6_port); } else { output_error_log(Error::UnsupportedAddressFamily, nullptr); return -1; } } else { return port; } } bool Server::listen_internal() { if (is_decommissioned) { return false; } auto ret = true; is_running_ = true; auto se = detail::scope_exit([&]() { is_running_ = false; }); { std::unique_ptr task_queue(new_task_queue()); while (svr_sock_ != INVALID_SOCKET) { #ifndef _WIN32 if (idle_interval_sec_ > 0 || idle_interval_usec_ > 0) { #endif auto val = detail::select_read(svr_sock_, idle_interval_sec_, idle_interval_usec_); if (val == 0) { // Timeout task_queue->on_idle(); continue; } #ifndef _WIN32 } #endif #if defined _WIN32 // sockets connected via WASAccept inherit flags NO_HANDLE_INHERIT, // OVERLAPPED socket_t sock = WSAAccept(svr_sock_, nullptr, nullptr, nullptr, 0); #elif defined SOCK_CLOEXEC socket_t sock = accept4(svr_sock_, nullptr, nullptr, SOCK_CLOEXEC); #else socket_t sock = accept(svr_sock_, nullptr, nullptr); #endif if (sock == INVALID_SOCKET) { if (errno == EMFILE) { // The per-process limit of open file descriptors has been reached. // Try to accept new connections after a short sleep. std::this_thread::sleep_for(std::chrono::microseconds{1}); continue; } else if (errno == EINTR || errno == EAGAIN) { continue; } if (svr_sock_ != INVALID_SOCKET) { detail::close_socket(svr_sock_); ret = false; output_error_log(Error::Connection, nullptr); } else { ; // The server socket was closed by user. } break; } detail::set_socket_opt_time(sock, SOL_SOCKET, SO_RCVTIMEO, read_timeout_sec_, read_timeout_usec_); detail::set_socket_opt_time(sock, SOL_SOCKET, SO_SNDTIMEO, write_timeout_sec_, write_timeout_usec_); if (!task_queue->enqueue( [this, sock]() { process_and_close_socket(sock); })) { output_error_log(Error::ResourceExhaustion, nullptr); detail::shutdown_socket(sock); detail::close_socket(sock); } } task_queue->shutdown(); } is_decommissioned = !ret; return ret; } bool Server::routing(Request &req, Response &res, Stream &strm) { if (pre_routing_handler_ && pre_routing_handler_(req, res) == HandlerResponse::Handled) { return true; } // File handler if ((req.method == "GET" || req.method == "HEAD") && handle_file_request(req, res)) { return true; } if (detail::expect_content(req)) { // Content reader handler { ContentReader reader( [&](ContentReceiver receiver) { auto result = read_content_with_content_receiver( strm, req, res, std::move(receiver), nullptr, nullptr); if (!result) { output_error_log(Error::Read, &req); } return result; }, [&](FormDataHeader header, ContentReceiver receiver) { auto result = read_content_with_content_receiver( strm, req, res, nullptr, std::move(header), std::move(receiver)); if (!result) { output_error_log(Error::Read, &req); } return result; }); if (req.method == "POST") { if (dispatch_request_for_content_reader( req, res, std::move(reader), post_handlers_for_content_reader_)) { return true; } } else if (req.method == "PUT") { if (dispatch_request_for_content_reader( req, res, std::move(reader), put_handlers_for_content_reader_)) { return true; } } else if (req.method == "PATCH") { if (dispatch_request_for_content_reader( req, res, std::move(reader), patch_handlers_for_content_reader_)) { return true; } } else if (req.method == "DELETE") { if (dispatch_request_for_content_reader( req, res, std::move(reader), delete_handlers_for_content_reader_)) { return true; } } } // Read content into `req.body` if (!read_content(strm, req, res)) { output_error_log(Error::Read, &req); return false; } } // Regular handler if (req.method == "GET" || req.method == "HEAD") { return dispatch_request(req, res, get_handlers_); } else if (req.method == "POST") { return dispatch_request(req, res, post_handlers_); } else if (req.method == "PUT") { return dispatch_request(req, res, put_handlers_); } else if (req.method == "DELETE") { return dispatch_request(req, res, delete_handlers_); } else if (req.method == "OPTIONS") { return dispatch_request(req, res, options_handlers_); } else if (req.method == "PATCH") { return dispatch_request(req, res, patch_handlers_); } res.status = StatusCode::BadRequest_400; return false; } bool Server::dispatch_request(Request &req, Response &res, const Handlers &handlers) const { for (const auto &x : handlers) { const auto &matcher = x.first; const auto &handler = x.second; if (matcher->match(req)) { req.matched_route = matcher->pattern(); if (!pre_request_handler_ || pre_request_handler_(req, res) != HandlerResponse::Handled) { handler(req, res); } return true; } } return false; } void Server::apply_ranges(const Request &req, Response &res, std::string &content_type, std::string &boundary) const { if (req.ranges.size() > 1 && res.status == StatusCode::PartialContent_206) { auto it = res.headers.find("Content-Type"); if (it != res.headers.end()) { content_type = it->second; res.headers.erase(it); } boundary = detail::make_multipart_data_boundary(); res.set_header("Content-Type", "multipart/byteranges; boundary=" + boundary); } auto type = detail::encoding_type(req, res); if (res.body.empty()) { if (res.content_length_ > 0) { size_t length = 0; if (req.ranges.empty() || res.status != StatusCode::PartialContent_206) { length = res.content_length_; } else if (req.ranges.size() == 1) { auto offset_and_length = detail::get_range_offset_and_length( req.ranges[0], res.content_length_); length = offset_and_length.second; auto content_range = detail::make_content_range_header_field( offset_and_length, res.content_length_); res.set_header("Content-Range", content_range); } else { length = detail::get_multipart_ranges_data_length( req, boundary, content_type, res.content_length_); } res.set_header("Content-Length", std::to_string(length)); } else { if (res.content_provider_) { if (res.is_chunked_content_provider_) { res.set_header("Transfer-Encoding", "chunked"); if (type == detail::EncodingType::Gzip) { res.set_header("Content-Encoding", "gzip"); } else if (type == detail::EncodingType::Brotli) { res.set_header("Content-Encoding", "br"); } else if (type == detail::EncodingType::Zstd) { res.set_header("Content-Encoding", "zstd"); } } } } } else { if (req.ranges.empty() || res.status != StatusCode::PartialContent_206) { ; } else if (req.ranges.size() == 1) { auto offset_and_length = detail::get_range_offset_and_length(req.ranges[0], res.body.size()); auto offset = offset_and_length.first; auto length = offset_and_length.second; auto content_range = detail::make_content_range_header_field( offset_and_length, res.body.size()); res.set_header("Content-Range", content_range); assert(offset + length <= res.body.size()); res.body = res.body.substr(offset, length); } else { std::string data; detail::make_multipart_ranges_data(req, res, boundary, content_type, res.body.size(), data); res.body.swap(data); } if (type != detail::EncodingType::None) { output_pre_compression_log(req, res); std::unique_ptr compressor; std::string content_encoding; if (type == detail::EncodingType::Gzip) { #ifdef CPPHTTPLIB_ZLIB_SUPPORT compressor = detail::make_unique(); content_encoding = "gzip"; #endif } else if (type == detail::EncodingType::Brotli) { #ifdef CPPHTTPLIB_BROTLI_SUPPORT compressor = detail::make_unique(); content_encoding = "br"; #endif } else if (type == detail::EncodingType::Zstd) { #ifdef CPPHTTPLIB_ZSTD_SUPPORT compressor = detail::make_unique(); content_encoding = "zstd"; #endif } if (compressor) { std::string compressed; if (compressor->compress(res.body.data(), res.body.size(), true, [&](const char *data, size_t data_len) { compressed.append(data, data_len); return true; })) { res.body.swap(compressed); res.set_header("Content-Encoding", content_encoding); } } } auto length = std::to_string(res.body.size()); res.set_header("Content-Length", length); } } bool Server::dispatch_request_for_content_reader( Request &req, Response &res, ContentReader content_reader, const HandlersForContentReader &handlers) const { for (const auto &x : handlers) { const auto &matcher = x.first; const auto &handler = x.second; if (matcher->match(req)) { req.matched_route = matcher->pattern(); if (!pre_request_handler_ || pre_request_handler_(req, res) != HandlerResponse::Handled) { handler(req, res, content_reader); } return true; } } return false; } std::string get_client_ip(const std::string &x_forwarded_for, const std::vector &trusted_proxies) { // X-Forwarded-For is a comma-separated list per RFC 7239 std::vector ip_list; detail::split(x_forwarded_for.data(), x_forwarded_for.data() + x_forwarded_for.size(), ',', [&](const char *b, const char *e) { auto r = detail::trim(b, e, 0, static_cast(e - b)); ip_list.emplace_back(std::string(b + r.first, b + r.second)); }); for (size_t i = 0; i < ip_list.size(); ++i) { auto ip = ip_list[i]; auto is_trusted_proxy = std::any_of(trusted_proxies.begin(), trusted_proxies.end(), [&](const std::string &proxy) { return ip == proxy; }); if (is_trusted_proxy) { if (i == 0) { // If the trusted proxy is the first IP, there's no preceding client IP return ip; } else { // Return the IP immediately before the trusted proxy return ip_list[i - 1]; } } } // If no trusted proxy is found, return the first IP in the list return ip_list.front(); } bool Server::process_request(Stream &strm, const std::string &remote_addr, int remote_port, const std::string &local_addr, int local_port, bool close_connection, bool &connection_closed, const std::function &setup_request) { std::array buf{}; detail::stream_line_reader line_reader(strm, buf.data(), buf.size()); // Connection has been closed on client if (!line_reader.getline()) { return false; } Request req; req.start_time_ = std::chrono::steady_clock::now(); Response res; res.version = "HTTP/1.1"; res.headers = default_headers_; #ifdef __APPLE__ // Socket file descriptor exceeded FD_SETSIZE... if (strm.socket() >= FD_SETSIZE) { Headers dummy; detail::read_headers(strm, dummy); res.status = StatusCode::InternalServerError_500; output_error_log(Error::ExceedMaxSocketDescriptorCount, &req); return write_response(strm, close_connection, req, res); } #endif // Request line and headers if (!parse_request_line(line_reader.ptr(), req)) { res.status = StatusCode::BadRequest_400; output_error_log(Error::InvalidRequestLine, &req); return write_response(strm, close_connection, req, res); } // Request headers if (!detail::read_headers(strm, req.headers)) { res.status = StatusCode::BadRequest_400; output_error_log(Error::InvalidHeaders, &req); return write_response(strm, close_connection, req, res); } // Check if the request URI doesn't exceed the limit if (req.target.size() > CPPHTTPLIB_REQUEST_URI_MAX_LENGTH) { Headers dummy; detail::read_headers(strm, dummy); res.status = StatusCode::UriTooLong_414; output_error_log(Error::ExceedUriMaxLength, &req); return write_response(strm, close_connection, req, res); } if (req.get_header_value("Connection") == "close") { connection_closed = true; } if (req.version == "HTTP/1.0" && req.get_header_value("Connection") != "Keep-Alive") { connection_closed = true; } if (!trusted_proxies_.empty() && req.has_header("X-Forwarded-For")) { auto x_forwarded_for = req.get_header_value("X-Forwarded-For"); req.remote_addr = get_client_ip(x_forwarded_for, trusted_proxies_); } else { req.remote_addr = remote_addr; } req.remote_port = remote_port; req.local_addr = local_addr; req.local_port = local_port; if (req.has_header("Accept")) { const auto &accept_header = req.get_header_value("Accept"); if (!detail::parse_accept_header(accept_header, req.accept_content_types)) { res.status = StatusCode::BadRequest_400; output_error_log(Error::HTTPParsing, &req); return write_response(strm, close_connection, req, res); } } if (req.has_header("Range")) { const auto &range_header_value = req.get_header_value("Range"); if (!detail::parse_range_header(range_header_value, req.ranges)) { res.status = StatusCode::RangeNotSatisfiable_416; output_error_log(Error::InvalidRangeHeader, &req); return write_response(strm, close_connection, req, res); } } if (setup_request) { setup_request(req); } if (req.get_header_value("Expect") == "100-continue") { int status = StatusCode::Continue_100; if (expect_100_continue_handler_) { status = expect_100_continue_handler_(req, res); } switch (status) { case StatusCode::Continue_100: case StatusCode::ExpectationFailed_417: detail::write_response_line(strm, status); strm.write("\r\n"); break; default: connection_closed = true; return write_response(strm, true, req, res); } } // Setup `is_connection_closed` method auto sock = strm.socket(); req.is_connection_closed = [sock]() { return !detail::is_socket_alive(sock); }; // Routing auto routed = false; #ifdef CPPHTTPLIB_NO_EXCEPTIONS routed = routing(req, res, strm); #else try { routed = routing(req, res, strm); } catch (std::exception &e) { if (exception_handler_) { auto ep = std::current_exception(); exception_handler_(req, res, ep); routed = true; } else { res.status = StatusCode::InternalServerError_500; std::string val; auto s = e.what(); for (size_t i = 0; s[i]; i++) { switch (s[i]) { case '\r': val += "\\r"; break; case '\n': val += "\\n"; break; default: val += s[i]; break; } } res.set_header("EXCEPTION_WHAT", val); } } catch (...) { if (exception_handler_) { auto ep = std::current_exception(); exception_handler_(req, res, ep); routed = true; } else { res.status = StatusCode::InternalServerError_500; res.set_header("EXCEPTION_WHAT", "UNKNOWN"); } } #endif if (routed) { if (res.status == -1) { res.status = req.ranges.empty() ? StatusCode::OK_200 : StatusCode::PartialContent_206; } // Serve file content by using a content provider if (!res.file_content_path_.empty()) { const auto &path = res.file_content_path_; auto mm = std::make_shared(path.c_str()); if (!mm->is_open()) { res.body.clear(); res.content_length_ = 0; res.content_provider_ = nullptr; res.status = StatusCode::NotFound_404; output_error_log(Error::OpenFile, &req); return write_response(strm, close_connection, req, res); } auto content_type = res.file_content_content_type_; if (content_type.empty()) { content_type = detail::find_content_type( path, file_extension_and_mimetype_map_, default_file_mimetype_); } res.set_content_provider( mm->size(), content_type, [mm](size_t offset, size_t length, DataSink &sink) -> bool { sink.write(mm->data() + offset, length); return true; }); } if (detail::range_error(req, res)) { res.body.clear(); res.content_length_ = 0; res.content_provider_ = nullptr; res.status = StatusCode::RangeNotSatisfiable_416; return write_response(strm, close_connection, req, res); } return write_response_with_content(strm, close_connection, req, res); } else { if (res.status == -1) { res.status = StatusCode::NotFound_404; } return write_response(strm, close_connection, req, res); } } bool Server::is_valid() const { return true; } bool Server::process_and_close_socket(socket_t sock) { std::string remote_addr; int remote_port = 0; detail::get_remote_ip_and_port(sock, remote_addr, remote_port); std::string local_addr; int local_port = 0; detail::get_local_ip_and_port(sock, local_addr, local_port); auto ret = detail::process_server_socket( svr_sock_, sock, keep_alive_max_count_, keep_alive_timeout_sec_, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, [&](Stream &strm, bool close_connection, bool &connection_closed) { return process_request(strm, remote_addr, remote_port, local_addr, local_port, close_connection, connection_closed, nullptr); }); detail::shutdown_socket(sock); detail::close_socket(sock); return ret; } void Server::output_log(const Request &req, const Response &res) const { if (logger_) { std::lock_guard guard(logger_mutex_); logger_(req, res); } } void Server::output_pre_compression_log(const Request &req, const Response &res) const { if (pre_compression_logger_) { std::lock_guard guard(logger_mutex_); pre_compression_logger_(req, res); } } void Server::output_error_log(const Error &err, const Request *req) const { if (error_logger_) { std::lock_guard guard(logger_mutex_); error_logger_(err, req); } } // HTTP client implementation ClientImpl::ClientImpl(const std::string &host) : ClientImpl(host, 80, std::string(), std::string()) {} ClientImpl::ClientImpl(const std::string &host, int port) : ClientImpl(host, port, std::string(), std::string()) {} ClientImpl::ClientImpl(const std::string &host, int port, const std::string &client_cert_path, const std::string &client_key_path) : host_(detail::escape_abstract_namespace_unix_domain(host)), port_(port), host_and_port_(detail::make_host_and_port_string(host_, port, is_ssl())), client_cert_path_(client_cert_path), client_key_path_(client_key_path) {} ClientImpl::~ClientImpl() { // Wait until all the requests in flight are handled. size_t retry_count = 10; while (retry_count-- > 0) { { std::lock_guard guard(socket_mutex_); if (socket_requests_in_flight_ == 0) { break; } } std::this_thread::sleep_for(std::chrono::milliseconds{1}); } std::lock_guard guard(socket_mutex_); shutdown_socket(socket_); close_socket(socket_); } bool ClientImpl::is_valid() const { return true; } void ClientImpl::copy_settings(const ClientImpl &rhs) { client_cert_path_ = rhs.client_cert_path_; client_key_path_ = rhs.client_key_path_; connection_timeout_sec_ = rhs.connection_timeout_sec_; read_timeout_sec_ = rhs.read_timeout_sec_; read_timeout_usec_ = rhs.read_timeout_usec_; write_timeout_sec_ = rhs.write_timeout_sec_; write_timeout_usec_ = rhs.write_timeout_usec_; max_timeout_msec_ = rhs.max_timeout_msec_; basic_auth_username_ = rhs.basic_auth_username_; basic_auth_password_ = rhs.basic_auth_password_; bearer_token_auth_token_ = rhs.bearer_token_auth_token_; #ifdef CPPHTTPLIB_OPENSSL_SUPPORT digest_auth_username_ = rhs.digest_auth_username_; digest_auth_password_ = rhs.digest_auth_password_; #endif keep_alive_ = rhs.keep_alive_; follow_location_ = rhs.follow_location_; path_encode_ = rhs.path_encode_; address_family_ = rhs.address_family_; tcp_nodelay_ = rhs.tcp_nodelay_; ipv6_v6only_ = rhs.ipv6_v6only_; socket_options_ = rhs.socket_options_; compress_ = rhs.compress_; decompress_ = rhs.decompress_; interface_ = rhs.interface_; proxy_host_ = rhs.proxy_host_; proxy_port_ = rhs.proxy_port_; proxy_basic_auth_username_ = rhs.proxy_basic_auth_username_; proxy_basic_auth_password_ = rhs.proxy_basic_auth_password_; proxy_bearer_token_auth_token_ = rhs.proxy_bearer_token_auth_token_; #ifdef CPPHTTPLIB_OPENSSL_SUPPORT proxy_digest_auth_username_ = rhs.proxy_digest_auth_username_; proxy_digest_auth_password_ = rhs.proxy_digest_auth_password_; #endif #ifdef CPPHTTPLIB_OPENSSL_SUPPORT ca_cert_file_path_ = rhs.ca_cert_file_path_; ca_cert_dir_path_ = rhs.ca_cert_dir_path_; ca_cert_store_ = rhs.ca_cert_store_; #endif #ifdef CPPHTTPLIB_OPENSSL_SUPPORT server_certificate_verification_ = rhs.server_certificate_verification_; server_hostname_verification_ = rhs.server_hostname_verification_; server_certificate_verifier_ = rhs.server_certificate_verifier_; #endif logger_ = rhs.logger_; error_logger_ = rhs.error_logger_; } socket_t ClientImpl::create_client_socket(Error &error) const { if (!proxy_host_.empty() && proxy_port_ != -1) { return detail::create_client_socket( proxy_host_, std::string(), proxy_port_, address_family_, tcp_nodelay_, ipv6_v6only_, socket_options_, connection_timeout_sec_, connection_timeout_usec_, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, interface_, error); } // Check is custom IP specified for host_ std::string ip; auto it = addr_map_.find(host_); if (it != addr_map_.end()) { ip = it->second; } return detail::create_client_socket( host_, ip, port_, address_family_, tcp_nodelay_, ipv6_v6only_, socket_options_, connection_timeout_sec_, connection_timeout_usec_, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, interface_, error); } bool ClientImpl::create_and_connect_socket(Socket &socket, Error &error) { auto sock = create_client_socket(error); if (sock == INVALID_SOCKET) { return false; } socket.sock = sock; return true; } void ClientImpl::shutdown_ssl(Socket & /*socket*/, bool /*shutdown_gracefully*/) { // If there are any requests in flight from threads other than us, then it's // a thread-unsafe race because individual ssl* objects are not thread-safe. assert(socket_requests_in_flight_ == 0 || socket_requests_are_from_thread_ == std::this_thread::get_id()); } void ClientImpl::shutdown_socket(Socket &socket) const { if (socket.sock == INVALID_SOCKET) { return; } detail::shutdown_socket(socket.sock); } void ClientImpl::close_socket(Socket &socket) { // If there are requests in flight in another thread, usually closing // the socket will be fine and they will simply receive an error when // using the closed socket, but it is still a bug since rarely the OS // may reassign the socket id to be used for a new socket, and then // suddenly they will be operating on a live socket that is different // than the one they intended! assert(socket_requests_in_flight_ == 0 || socket_requests_are_from_thread_ == std::this_thread::get_id()); // It is also a bug if this happens while SSL is still active #ifdef CPPHTTPLIB_OPENSSL_SUPPORT assert(socket.ssl == nullptr); #endif if (socket.sock == INVALID_SOCKET) { return; } detail::close_socket(socket.sock); socket.sock = INVALID_SOCKET; } bool ClientImpl::read_response_line(Stream &strm, const Request &req, Response &res) const { std::array buf{}; detail::stream_line_reader line_reader(strm, buf.data(), buf.size()); if (!line_reader.getline()) { return false; } #ifdef CPPHTTPLIB_ALLOW_LF_AS_LINE_TERMINATOR thread_local const std::regex re("(HTTP/1\\.[01]) (\\d{3})(?: (.*?))?\r?\n"); #else thread_local const std::regex re("(HTTP/1\\.[01]) (\\d{3})(?: (.*?))?\r\n"); #endif std::cmatch m; if (!std::regex_match(line_reader.ptr(), m, re)) { return req.method == "CONNECT"; } res.version = std::string(m[1]); res.status = std::stoi(std::string(m[2])); res.reason = std::string(m[3]); // Ignore '100 Continue' while (res.status == StatusCode::Continue_100) { if (!line_reader.getline()) { return false; } // CRLF if (!line_reader.getline()) { return false; } // next response line if (!std::regex_match(line_reader.ptr(), m, re)) { return false; } res.version = std::string(m[1]); res.status = std::stoi(std::string(m[2])); res.reason = std::string(m[3]); } return true; } bool ClientImpl::send(Request &req, Response &res, Error &error) { std::lock_guard request_mutex_guard(request_mutex_); auto ret = send_(req, res, error); if (error == Error::SSLPeerCouldBeClosed_) { assert(!ret); ret = send_(req, res, error); } return ret; } bool ClientImpl::send_(Request &req, Response &res, Error &error) { { std::lock_guard guard(socket_mutex_); // Set this to false immediately - if it ever gets set to true by the end // of the request, we know another thread instructed us to close the // socket. socket_should_be_closed_when_request_is_done_ = false; auto is_alive = false; if (socket_.is_open()) { is_alive = detail::is_socket_alive(socket_.sock); #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (is_alive && is_ssl()) { if (detail::is_ssl_peer_could_be_closed(socket_.ssl, socket_.sock)) { is_alive = false; } } #endif if (!is_alive) { // Attempt to avoid sigpipe by shutting down non-gracefully if it // seems like the other side has already closed the connection Also, // there cannot be any requests in flight from other threads since we // locked request_mutex_, so safe to close everything immediately const bool shutdown_gracefully = false; shutdown_ssl(socket_, shutdown_gracefully); shutdown_socket(socket_); close_socket(socket_); } } if (!is_alive) { if (!create_and_connect_socket(socket_, error)) { output_error_log(error, &req); return false; } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT // TODO: refactoring if (is_ssl()) { auto &scli = static_cast(*this); if (!proxy_host_.empty() && proxy_port_ != -1) { auto success = false; if (!scli.connect_with_proxy(socket_, req.start_time_, res, success, error)) { if (!success) { output_error_log(error, &req); } return success; } } if (!scli.initialize_ssl(socket_, error)) { output_error_log(error, &req); return false; } } #endif } // Mark the current socket as being in use so that it cannot be closed by // anyone else while this request is ongoing, even though we will be // releasing the mutex. if (socket_requests_in_flight_ > 1) { assert(socket_requests_are_from_thread_ == std::this_thread::get_id()); } socket_requests_in_flight_ += 1; socket_requests_are_from_thread_ = std::this_thread::get_id(); } for (const auto &header : default_headers_) { if (req.headers.find(header.first) == req.headers.end()) { req.headers.insert(header); } } auto ret = false; auto close_connection = !keep_alive_; auto se = detail::scope_exit([&]() { // Briefly lock mutex in order to mark that a request is no longer ongoing std::lock_guard guard(socket_mutex_); socket_requests_in_flight_ -= 1; if (socket_requests_in_flight_ <= 0) { assert(socket_requests_in_flight_ == 0); socket_requests_are_from_thread_ = std::thread::id(); } if (socket_should_be_closed_when_request_is_done_ || close_connection || !ret) { shutdown_ssl(socket_, true); shutdown_socket(socket_); close_socket(socket_); } }); ret = process_socket(socket_, req.start_time_, [&](Stream &strm) { return handle_request(strm, req, res, close_connection, error); }); if (!ret) { if (error == Error::Success) { error = Error::Unknown; output_error_log(error, &req); } } return ret; } Result ClientImpl::send(const Request &req) { auto req2 = req; return send_(std::move(req2)); } Result ClientImpl::send_(Request &&req) { auto res = detail::make_unique(); auto error = Error::Success; auto ret = send(req, *res, error); #ifdef CPPHTTPLIB_OPENSSL_SUPPORT return Result{ret ? std::move(res) : nullptr, error, std::move(req.headers), last_ssl_error_, last_openssl_error_}; #else return Result{ret ? std::move(res) : nullptr, error, std::move(req.headers)}; #endif } bool ClientImpl::handle_request(Stream &strm, Request &req, Response &res, bool close_connection, Error &error) { if (req.path.empty()) { error = Error::Connection; output_error_log(error, &req); return false; } auto req_save = req; bool ret; if (!is_ssl() && !proxy_host_.empty() && proxy_port_ != -1) { auto req2 = req; req2.path = "http://" + host_and_port_ + req.path; ret = process_request(strm, req2, res, close_connection, error); req = req2; req.path = req_save.path; } else { ret = process_request(strm, req, res, close_connection, error); } if (!ret) { return false; } if (res.get_header_value("Connection") == "close" || (res.version == "HTTP/1.0" && res.reason != "Connection established")) { // TODO this requires a not-entirely-obvious chain of calls to be correct // for this to be safe. // This is safe to call because handle_request is only called by send_ // which locks the request mutex during the process. It would be a bug // to call it from a different thread since it's a thread-safety issue // to do these things to the socket if another thread is using the socket. std::lock_guard guard(socket_mutex_); shutdown_ssl(socket_, true); shutdown_socket(socket_); close_socket(socket_); } if (300 < res.status && res.status < 400 && follow_location_) { req = req_save; ret = redirect(req, res, error); } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if ((res.status == StatusCode::Unauthorized_401 || res.status == StatusCode::ProxyAuthenticationRequired_407) && req.authorization_count_ < 5) { auto is_proxy = res.status == StatusCode::ProxyAuthenticationRequired_407; const auto &username = is_proxy ? proxy_digest_auth_username_ : digest_auth_username_; const auto &password = is_proxy ? proxy_digest_auth_password_ : digest_auth_password_; if (!username.empty() && !password.empty()) { std::map auth; if (detail::parse_www_authenticate(res, auth, is_proxy)) { Request new_req = req; new_req.authorization_count_ += 1; new_req.headers.erase(is_proxy ? "Proxy-Authorization" : "Authorization"); new_req.headers.insert(detail::make_digest_authentication_header( req, auth, new_req.authorization_count_, detail::random_string(10), username, password, is_proxy)); Response new_res; ret = send(new_req, new_res, error); if (ret) { res = new_res; } } } } #endif return ret; } bool ClientImpl::redirect(Request &req, Response &res, Error &error) { if (req.redirect_count_ == 0) { error = Error::ExceedRedirectCount; output_error_log(error, &req); return false; } auto location = res.get_header_value("location"); if (location.empty()) { return false; } thread_local const std::regex re( R"((?:(https?):)?(?://(?:\[([a-fA-F\d:]+)\]|([^:/?#]+))(?::(\d+))?)?([^?#]*)(\?[^#]*)?(?:#.*)?)"); std::smatch m; if (!std::regex_match(location, m, re)) { return false; } auto scheme = is_ssl() ? "https" : "http"; auto next_scheme = m[1].str(); auto next_host = m[2].str(); if (next_host.empty()) { next_host = m[3].str(); } auto port_str = m[4].str(); auto next_path = m[5].str(); auto next_query = m[6].str(); auto next_port = port_; if (!port_str.empty()) { next_port = std::stoi(port_str); } else if (!next_scheme.empty()) { next_port = next_scheme == "https" ? 443 : 80; } if (next_scheme.empty()) { next_scheme = scheme; } if (next_host.empty()) { next_host = host_; } if (next_path.empty()) { next_path = "/"; } auto path = decode_query_component(next_path, true) + next_query; // Same host redirect - use current client if (next_scheme == scheme && next_host == host_ && next_port == port_) { return detail::redirect(*this, req, res, path, location, error); } // Cross-host/scheme redirect - create new client with robust setup return create_redirect_client(next_scheme, next_host, next_port, req, res, path, location, error); } // New method for robust redirect client creation bool ClientImpl::create_redirect_client( const std::string &scheme, const std::string &host, int port, Request &req, Response &res, const std::string &path, const std::string &location, Error &error) { // Determine if we need SSL auto need_ssl = (scheme == "https"); // Clean up request headers that are host/client specific // Remove headers that should not be carried over to new host auto headers_to_remove = std::vector{"Host", "Proxy-Authorization", "Authorization"}; for (const auto &header_name : headers_to_remove) { auto it = req.headers.find(header_name); while (it != req.headers.end()) { it = req.headers.erase(it); it = req.headers.find(header_name); } } // Create appropriate client type and handle redirect if (need_ssl) { #ifdef CPPHTTPLIB_OPENSSL_SUPPORT // Create SSL client for HTTPS redirect SSLClient redirect_client(host, port); // Setup basic client configuration first setup_redirect_client(redirect_client); // SSL-specific configuration for proxy environments if (!proxy_host_.empty() && proxy_port_ != -1) { // Critical: Disable SSL verification for proxy environments redirect_client.enable_server_certificate_verification(false); redirect_client.enable_server_hostname_verification(false); } else { // For direct SSL connections, copy SSL verification settings redirect_client.enable_server_certificate_verification( server_certificate_verification_); redirect_client.enable_server_hostname_verification( server_hostname_verification_); } // Handle CA certificate store and paths if available if (ca_cert_store_ && X509_STORE_up_ref(ca_cert_store_)) { redirect_client.set_ca_cert_store(ca_cert_store_); } if (!ca_cert_file_path_.empty()) { redirect_client.set_ca_cert_path(ca_cert_file_path_, ca_cert_dir_path_); } // Client certificates are set through constructor for SSLClient // NOTE: SSLClient constructor already takes client_cert_path and // client_key_path so we need to create it properly if client certs are // needed // Execute the redirect return detail::redirect(redirect_client, req, res, path, location, error); #else // SSL not supported - set appropriate error error = Error::SSLConnection; output_error_log(error, &req); return false; #endif } else { // HTTP redirect ClientImpl redirect_client(host, port); // Setup client with robust configuration setup_redirect_client(redirect_client); // Execute the redirect return detail::redirect(redirect_client, req, res, path, location, error); } } // New method for robust client setup (based on basic_manual_redirect.cpp // logic) template void ClientImpl::setup_redirect_client(ClientType &client) { // Copy basic settings first client.set_connection_timeout(connection_timeout_sec_); client.set_read_timeout(read_timeout_sec_, read_timeout_usec_); client.set_write_timeout(write_timeout_sec_, write_timeout_usec_); client.set_keep_alive(keep_alive_); client.set_follow_location( true); // Enable redirects to handle multi-step redirects client.set_path_encode(path_encode_); client.set_compress(compress_); client.set_decompress(decompress_); // Copy authentication settings BEFORE proxy setup if (!basic_auth_username_.empty()) { client.set_basic_auth(basic_auth_username_, basic_auth_password_); } if (!bearer_token_auth_token_.empty()) { client.set_bearer_token_auth(bearer_token_auth_token_); } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (!digest_auth_username_.empty()) { client.set_digest_auth(digest_auth_username_, digest_auth_password_); } #endif // Setup proxy configuration (CRITICAL ORDER - proxy must be set // before proxy auth) if (!proxy_host_.empty() && proxy_port_ != -1) { // First set proxy host and port client.set_proxy(proxy_host_, proxy_port_); // Then set proxy authentication (order matters!) if (!proxy_basic_auth_username_.empty()) { client.set_proxy_basic_auth(proxy_basic_auth_username_, proxy_basic_auth_password_); } if (!proxy_bearer_token_auth_token_.empty()) { client.set_proxy_bearer_token_auth(proxy_bearer_token_auth_token_); } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (!proxy_digest_auth_username_.empty()) { client.set_proxy_digest_auth(proxy_digest_auth_username_, proxy_digest_auth_password_); } #endif } // Copy network and socket settings client.set_address_family(address_family_); client.set_tcp_nodelay(tcp_nodelay_); client.set_ipv6_v6only(ipv6_v6only_); if (socket_options_) { client.set_socket_options(socket_options_); } if (!interface_.empty()) { client.set_interface(interface_); } // Copy logging and headers if (logger_) { client.set_logger(logger_); } if (error_logger_) { client.set_error_logger(error_logger_); } // NOTE: DO NOT copy default_headers_ as they may contain stale Host headers // Each new client should generate its own headers based on its target host } bool ClientImpl::write_content_with_provider(Stream &strm, const Request &req, Error &error) const { auto is_shutting_down = []() { return false; }; if (req.is_chunked_content_provider_) { // TODO: Brotli support std::unique_ptr compressor; #ifdef CPPHTTPLIB_ZLIB_SUPPORT if (compress_) { compressor = detail::make_unique(); } else #endif { compressor = detail::make_unique(); } return detail::write_content_chunked(strm, req.content_provider_, is_shutting_down, *compressor, error); } else { return detail::write_content_with_progress( strm, req.content_provider_, 0, req.content_length_, is_shutting_down, req.upload_progress, error); } } bool ClientImpl::write_request(Stream &strm, Request &req, bool close_connection, Error &error) { // Prepare additional headers if (close_connection) { if (!req.has_header("Connection")) { req.set_header("Connection", "close"); } } if (!req.has_header("Host")) { // For Unix socket connections, use "localhost" as Host header (similar to // curl behavior) if (address_family_ == AF_UNIX) { req.set_header("Host", "localhost"); } else { req.set_header("Host", host_and_port_); } } if (!req.has_header("Accept")) { req.set_header("Accept", "*/*"); } if (!req.content_receiver) { if (!req.has_header("Accept-Encoding")) { std::string accept_encoding; #ifdef CPPHTTPLIB_BROTLI_SUPPORT accept_encoding = "br"; #endif #ifdef CPPHTTPLIB_ZLIB_SUPPORT if (!accept_encoding.empty()) { accept_encoding += ", "; } accept_encoding += "gzip, deflate"; #endif #ifdef CPPHTTPLIB_ZSTD_SUPPORT if (!accept_encoding.empty()) { accept_encoding += ", "; } accept_encoding += "zstd"; #endif req.set_header("Accept-Encoding", accept_encoding); } #ifndef CPPHTTPLIB_NO_DEFAULT_USER_AGENT if (!req.has_header("User-Agent")) { auto agent = std::string("cpp-httplib/") + CPPHTTPLIB_VERSION; req.set_header("User-Agent", agent); } #endif }; if (req.body.empty()) { if (req.content_provider_) { if (!req.is_chunked_content_provider_) { if (!req.has_header("Content-Length")) { auto length = std::to_string(req.content_length_); req.set_header("Content-Length", length); } } } else { if (req.method == "POST" || req.method == "PUT" || req.method == "PATCH") { req.set_header("Content-Length", "0"); } } } else { if (!req.has_header("Content-Type")) { req.set_header("Content-Type", "text/plain"); } if (!req.has_header("Content-Length")) { auto length = std::to_string(req.body.size()); req.set_header("Content-Length", length); } } if (!basic_auth_password_.empty() || !basic_auth_username_.empty()) { if (!req.has_header("Authorization")) { req.headers.insert(make_basic_authentication_header( basic_auth_username_, basic_auth_password_, false)); } } if (!proxy_basic_auth_username_.empty() && !proxy_basic_auth_password_.empty()) { if (!req.has_header("Proxy-Authorization")) { req.headers.insert(make_basic_authentication_header( proxy_basic_auth_username_, proxy_basic_auth_password_, true)); } } if (!bearer_token_auth_token_.empty()) { if (!req.has_header("Authorization")) { req.headers.insert(make_bearer_token_authentication_header( bearer_token_auth_token_, false)); } } if (!proxy_bearer_token_auth_token_.empty()) { if (!req.has_header("Proxy-Authorization")) { req.headers.insert(make_bearer_token_authentication_header( proxy_bearer_token_auth_token_, true)); } } // Request line and headers { detail::BufferStream bstrm; // Extract path and query from req.path std::string path_part, query_part; auto query_pos = req.path.find('?'); if (query_pos != std::string::npos) { path_part = req.path.substr(0, query_pos); query_part = req.path.substr(query_pos + 1); } else { path_part = req.path; query_part = ""; } // Encode path and query auto path_with_query = path_encode_ ? detail::encode_path(path_part) : path_part; detail::parse_query_text(query_part, req.params); if (!req.params.empty()) { path_with_query = append_query_params(path_with_query, req.params); } // Write request line and headers detail::write_request_line(bstrm, req.method, path_with_query); header_writer_(bstrm, req.headers); // Flush buffer auto &data = bstrm.get_buffer(); if (!detail::write_data(strm, data.data(), data.size())) { error = Error::Write; output_error_log(error, &req); return false; } } // Body if (req.body.empty()) { return write_content_with_provider(strm, req, error); } if (req.upload_progress) { auto body_size = req.body.size(); size_t written = 0; auto data = req.body.data(); while (written < body_size) { size_t to_write = (std::min)(CPPHTTPLIB_SEND_BUFSIZ, body_size - written); if (!detail::write_data(strm, data + written, to_write)) { error = Error::Write; output_error_log(error, &req); return false; } written += to_write; if (!req.upload_progress(written, body_size)) { error = Error::Canceled; output_error_log(error, &req); return false; } } } else { if (!detail::write_data(strm, req.body.data(), req.body.size())) { error = Error::Write; output_error_log(error, &req); return false; } } return true; } std::unique_ptr ClientImpl::send_with_content_provider( Request &req, const char *body, size_t content_length, ContentProvider content_provider, ContentProviderWithoutLength content_provider_without_length, const std::string &content_type, Error &error) { if (!content_type.empty()) { req.set_header("Content-Type", content_type); } #ifdef CPPHTTPLIB_ZLIB_SUPPORT if (compress_) { req.set_header("Content-Encoding", "gzip"); } #endif #ifdef CPPHTTPLIB_ZLIB_SUPPORT if (compress_ && !content_provider_without_length) { // TODO: Brotli support detail::gzip_compressor compressor; if (content_provider) { auto ok = true; size_t offset = 0; DataSink data_sink; data_sink.write = [&](const char *data, size_t data_len) -> bool { if (ok) { auto last = offset + data_len == content_length; auto ret = compressor.compress( data, data_len, last, [&](const char *compressed_data, size_t compressed_data_len) { req.body.append(compressed_data, compressed_data_len); return true; }); if (ret) { offset += data_len; } else { ok = false; } } return ok; }; while (ok && offset < content_length) { if (!content_provider(offset, content_length - offset, data_sink)) { error = Error::Canceled; output_error_log(error, &req); return nullptr; } } } else { if (!compressor.compress(body, content_length, true, [&](const char *data, size_t data_len) { req.body.append(data, data_len); return true; })) { error = Error::Compression; output_error_log(error, &req); return nullptr; } } } else #endif { if (content_provider) { req.content_length_ = content_length; req.content_provider_ = std::move(content_provider); req.is_chunked_content_provider_ = false; } else if (content_provider_without_length) { req.content_length_ = 0; req.content_provider_ = detail::ContentProviderAdapter( std::move(content_provider_without_length)); req.is_chunked_content_provider_ = true; req.set_header("Transfer-Encoding", "chunked"); } else { req.body.assign(body, content_length); } } auto res = detail::make_unique(); return send(req, *res, error) ? std::move(res) : nullptr; } Result ClientImpl::send_with_content_provider( const std::string &method, const std::string &path, const Headers &headers, const char *body, size_t content_length, ContentProvider content_provider, ContentProviderWithoutLength content_provider_without_length, const std::string &content_type, UploadProgress progress) { Request req; req.method = method; req.headers = headers; req.path = path; req.upload_progress = std::move(progress); if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } auto error = Error::Success; auto res = send_with_content_provider( req, body, content_length, std::move(content_provider), std::move(content_provider_without_length), content_type, error); #ifdef CPPHTTPLIB_OPENSSL_SUPPORT return Result{std::move(res), error, std::move(req.headers), last_ssl_error_, last_openssl_error_}; #else return Result{std::move(res), error, std::move(req.headers)}; #endif } void ClientImpl::output_log(const Request &req, const Response &res) const { if (logger_) { std::lock_guard guard(logger_mutex_); logger_(req, res); } } void ClientImpl::output_error_log(const Error &err, const Request *req) const { if (error_logger_) { std::lock_guard guard(logger_mutex_); error_logger_(err, req); } } bool ClientImpl::process_request(Stream &strm, Request &req, Response &res, bool close_connection, Error &error) { // Send request if (!write_request(strm, req, close_connection, error)) { return false; } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (is_ssl()) { auto is_proxy_enabled = !proxy_host_.empty() && proxy_port_ != -1; if (!is_proxy_enabled) { if (detail::is_ssl_peer_could_be_closed(socket_.ssl, socket_.sock)) { error = Error::SSLPeerCouldBeClosed_; output_error_log(error, &req); return false; } } } #endif // Receive response and headers if (!read_response_line(strm, req, res) || !detail::read_headers(strm, res.headers)) { error = Error::Read; output_error_log(error, &req); return false; } // Body if ((res.status != StatusCode::NoContent_204) && req.method != "HEAD" && req.method != "CONNECT") { auto redirect = 300 < res.status && res.status < 400 && res.status != StatusCode::NotModified_304 && follow_location_; if (req.response_handler && !redirect) { if (!req.response_handler(res)) { error = Error::Canceled; output_error_log(error, &req); return false; } } auto out = req.content_receiver ? static_cast( [&](const char *buf, size_t n, size_t off, size_t len) { if (redirect) { return true; } auto ret = req.content_receiver(buf, n, off, len); if (!ret) { error = Error::Canceled; output_error_log(error, &req); } return ret; }) : static_cast( [&](const char *buf, size_t n, size_t /*off*/, size_t /*len*/) { assert(res.body.size() + n <= res.body.max_size()); res.body.append(buf, n); return true; }); auto progress = [&](size_t current, size_t total) { if (!req.download_progress || redirect) { return true; } auto ret = req.download_progress(current, total); if (!ret) { error = Error::Canceled; output_error_log(error, &req); } return ret; }; if (res.has_header("Content-Length")) { if (!req.content_receiver) { auto len = res.get_header_value_u64("Content-Length"); if (len > res.body.max_size()) { error = Error::Read; output_error_log(error, &req); return false; } res.body.reserve(static_cast(len)); } } if (res.status != StatusCode::NotModified_304) { int dummy_status; if (!detail::read_content(strm, res, (std::numeric_limits::max)(), dummy_status, std::move(progress), std::move(out), decompress_)) { if (error != Error::Canceled) { error = Error::Read; } output_error_log(error, &req); return false; } } } // Log output_log(req, res); return true; } ContentProviderWithoutLength ClientImpl::get_multipart_content_provider( const std::string &boundary, const UploadFormDataItems &items, const FormDataProviderItems &provider_items) const { size_t cur_item = 0; size_t cur_start = 0; // cur_item and cur_start are copied to within the std::function and // maintain state between successive calls return [&, cur_item, cur_start](size_t offset, DataSink &sink) mutable -> bool { if (!offset && !items.empty()) { sink.os << detail::serialize_multipart_formdata(items, boundary, false); return true; } else if (cur_item < provider_items.size()) { if (!cur_start) { const auto &begin = detail::serialize_multipart_formdata_item_begin( provider_items[cur_item], boundary); offset += begin.size(); cur_start = offset; sink.os << begin; } DataSink cur_sink; auto has_data = true; cur_sink.write = sink.write; cur_sink.done = [&]() { has_data = false; }; if (!provider_items[cur_item].provider(offset - cur_start, cur_sink)) { return false; } if (!has_data) { sink.os << detail::serialize_multipart_formdata_item_end(); cur_item++; cur_start = 0; } return true; } else { sink.os << detail::serialize_multipart_formdata_finish(boundary); sink.done(); return true; } }; } bool ClientImpl::process_socket( const Socket &socket, std::chrono::time_point start_time, std::function callback) { return detail::process_client_socket( socket.sock, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, max_timeout_msec_, start_time, std::move(callback)); } bool ClientImpl::is_ssl() const { return false; } Result ClientImpl::Get(const std::string &path, DownloadProgress progress) { return Get(path, Headers(), std::move(progress)); } Result ClientImpl::Get(const std::string &path, const Params ¶ms, const Headers &headers, DownloadProgress progress) { if (params.empty()) { return Get(path, headers); } std::string path_with_query = append_query_params(path, params); return Get(path_with_query, headers, std::move(progress)); } Result ClientImpl::Get(const std::string &path, const Headers &headers, DownloadProgress progress) { Request req; req.method = "GET"; req.path = path; req.headers = headers; req.download_progress = std::move(progress); if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } return send_(std::move(req)); } Result ClientImpl::Get(const std::string &path, ContentReceiver content_receiver, DownloadProgress progress) { return Get(path, Headers(), nullptr, std::move(content_receiver), std::move(progress)); } Result ClientImpl::Get(const std::string &path, const Headers &headers, ContentReceiver content_receiver, DownloadProgress progress) { return Get(path, headers, nullptr, std::move(content_receiver), std::move(progress)); } Result ClientImpl::Get(const std::string &path, ResponseHandler response_handler, ContentReceiver content_receiver, DownloadProgress progress) { return Get(path, Headers(), std::move(response_handler), std::move(content_receiver), std::move(progress)); } Result ClientImpl::Get(const std::string &path, const Headers &headers, ResponseHandler response_handler, ContentReceiver content_receiver, DownloadProgress progress) { Request req; req.method = "GET"; req.path = path; req.headers = headers; req.response_handler = std::move(response_handler); req.content_receiver = [content_receiver](const char *data, size_t data_length, size_t /*offset*/, size_t /*total_length*/) { return content_receiver(data, data_length); }; req.download_progress = std::move(progress); if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } return send_(std::move(req)); } Result ClientImpl::Get(const std::string &path, const Params ¶ms, const Headers &headers, ContentReceiver content_receiver, DownloadProgress progress) { return Get(path, params, headers, nullptr, std::move(content_receiver), std::move(progress)); } Result ClientImpl::Get(const std::string &path, const Params ¶ms, const Headers &headers, ResponseHandler response_handler, ContentReceiver content_receiver, DownloadProgress progress) { if (params.empty()) { return Get(path, headers, std::move(response_handler), std::move(content_receiver), std::move(progress)); } std::string path_with_query = append_query_params(path, params); return Get(path_with_query, headers, std::move(response_handler), std::move(content_receiver), std::move(progress)); } Result ClientImpl::Head(const std::string &path) { return Head(path, Headers()); } Result ClientImpl::Head(const std::string &path, const Headers &headers) { Request req; req.method = "HEAD"; req.headers = headers; req.path = path; if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } return send_(std::move(req)); } Result ClientImpl::Post(const std::string &path) { return Post(path, std::string(), std::string()); } Result ClientImpl::Post(const std::string &path, const Headers &headers) { return Post(path, headers, nullptr, 0, std::string()); } Result ClientImpl::Post(const std::string &path, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return Post(path, Headers(), body, content_length, content_type, progress); } Result ClientImpl::Post(const std::string &path, const std::string &body, const std::string &content_type, UploadProgress progress) { return Post(path, Headers(), body, content_type, progress); } Result ClientImpl::Post(const std::string &path, const Params ¶ms) { return Post(path, Headers(), params); } Result ClientImpl::Post(const std::string &path, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return Post(path, Headers(), content_length, std::move(content_provider), content_type, progress); } Result ClientImpl::Post(const std::string &path, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return Post(path, Headers(), std::move(content_provider), content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, const Params ¶ms) { auto query = detail::params_to_query_str(params); return Post(path, headers, query, "application/x-www-form-urlencoded"); } Result ClientImpl::Post(const std::string &path, const UploadFormDataItems &items, UploadProgress progress) { return Post(path, Headers(), items, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, const UploadFormDataItems &items, UploadProgress progress) { const auto &boundary = detail::make_multipart_data_boundary(); const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); const auto &body = detail::serialize_multipart_formdata(items, boundary); return Post(path, headers, body, content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const std::string &boundary, UploadProgress progress) { if (!detail::is_multipart_boundary_chars_valid(boundary)) { return Result{nullptr, Error::UnsupportedMultipartBoundaryChars}; } const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); const auto &body = detail::serialize_multipart_formdata(items, boundary); return Post(path, headers, body, content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("POST", path, headers, body, content_length, nullptr, nullptr, content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("POST", path, headers, body.data(), body.size(), nullptr, nullptr, content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("POST", path, headers, nullptr, content_length, std::move(content_provider), nullptr, content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("POST", path, headers, nullptr, 0, nullptr, std::move(content_provider), content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const FormDataProviderItems &provider_items, UploadProgress progress) { const auto &boundary = detail::make_multipart_data_boundary(); const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); return send_with_content_provider( "POST", path, headers, nullptr, 0, nullptr, get_multipart_content_provider(boundary, items, provider_items), content_type, progress); } Result ClientImpl::Post(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, ContentReceiver content_receiver, DownloadProgress progress) { Request req; req.method = "POST"; req.path = path; req.headers = headers; req.body = body; req.content_receiver = [content_receiver](const char *data, size_t data_length, size_t /*offset*/, size_t /*total_length*/) { return content_receiver(data, data_length); }; req.download_progress = std::move(progress); if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } if (!content_type.empty()) { req.set_header("Content-Type", content_type); } return send_(std::move(req)); } Result ClientImpl::Put(const std::string &path) { return Put(path, std::string(), std::string()); } Result ClientImpl::Put(const std::string &path, const Headers &headers) { return Put(path, headers, nullptr, 0, std::string()); } Result ClientImpl::Put(const std::string &path, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return Put(path, Headers(), body, content_length, content_type, progress); } Result ClientImpl::Put(const std::string &path, const std::string &body, const std::string &content_type, UploadProgress progress) { return Put(path, Headers(), body, content_type, progress); } Result ClientImpl::Put(const std::string &path, const Params ¶ms) { return Put(path, Headers(), params); } Result ClientImpl::Put(const std::string &path, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return Put(path, Headers(), content_length, std::move(content_provider), content_type, progress); } Result ClientImpl::Put(const std::string &path, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return Put(path, Headers(), std::move(content_provider), content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, const Params ¶ms) { auto query = detail::params_to_query_str(params); return Put(path, headers, query, "application/x-www-form-urlencoded"); } Result ClientImpl::Put(const std::string &path, const UploadFormDataItems &items, UploadProgress progress) { return Put(path, Headers(), items, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, const UploadFormDataItems &items, UploadProgress progress) { const auto &boundary = detail::make_multipart_data_boundary(); const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); const auto &body = detail::serialize_multipart_formdata(items, boundary); return Put(path, headers, body, content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const std::string &boundary, UploadProgress progress) { if (!detail::is_multipart_boundary_chars_valid(boundary)) { return Result{nullptr, Error::UnsupportedMultipartBoundaryChars}; } const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); const auto &body = detail::serialize_multipart_formdata(items, boundary); return Put(path, headers, body, content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PUT", path, headers, body, content_length, nullptr, nullptr, content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PUT", path, headers, body.data(), body.size(), nullptr, nullptr, content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PUT", path, headers, nullptr, content_length, std::move(content_provider), nullptr, content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PUT", path, headers, nullptr, 0, nullptr, std::move(content_provider), content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const FormDataProviderItems &provider_items, UploadProgress progress) { const auto &boundary = detail::make_multipart_data_boundary(); const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); return send_with_content_provider( "PUT", path, headers, nullptr, 0, nullptr, get_multipart_content_provider(boundary, items, provider_items), content_type, progress); } Result ClientImpl::Put(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, ContentReceiver content_receiver, DownloadProgress progress) { Request req; req.method = "PUT"; req.path = path; req.headers = headers; req.body = body; req.content_receiver = [content_receiver](const char *data, size_t data_length, size_t /*offset*/, size_t /*total_length*/) { return content_receiver(data, data_length); }; req.download_progress = std::move(progress); if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } if (!content_type.empty()) { req.set_header("Content-Type", content_type); } return send_(std::move(req)); } Result ClientImpl::Patch(const std::string &path) { return Patch(path, std::string(), std::string()); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, UploadProgress progress) { return Patch(path, headers, nullptr, 0, std::string(), progress); } Result ClientImpl::Patch(const std::string &path, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return Patch(path, Headers(), body, content_length, content_type, progress); } Result ClientImpl::Patch(const std::string &path, const std::string &body, const std::string &content_type, UploadProgress progress) { return Patch(path, Headers(), body, content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Params ¶ms) { return Patch(path, Headers(), params); } Result ClientImpl::Patch(const std::string &path, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return Patch(path, Headers(), content_length, std::move(content_provider), content_type, progress); } Result ClientImpl::Patch(const std::string &path, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return Patch(path, Headers(), std::move(content_provider), content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, const Params ¶ms) { auto query = detail::params_to_query_str(params); return Patch(path, headers, query, "application/x-www-form-urlencoded"); } Result ClientImpl::Patch(const std::string &path, const UploadFormDataItems &items, UploadProgress progress) { return Patch(path, Headers(), items, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, const UploadFormDataItems &items, UploadProgress progress) { const auto &boundary = detail::make_multipart_data_boundary(); const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); const auto &body = detail::serialize_multipart_formdata(items, boundary); return Patch(path, headers, body, content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const std::string &boundary, UploadProgress progress) { if (!detail::is_multipart_boundary_chars_valid(boundary)) { return Result{nullptr, Error::UnsupportedMultipartBoundaryChars}; } const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); const auto &body = detail::serialize_multipart_formdata(items, boundary); return Patch(path, headers, body, content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PATCH", path, headers, body, content_length, nullptr, nullptr, content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PATCH", path, headers, body.data(), body.size(), nullptr, nullptr, content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PATCH", path, headers, nullptr, content_length, std::move(content_provider), nullptr, content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return send_with_content_provider("PATCH", path, headers, nullptr, 0, nullptr, std::move(content_provider), content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const FormDataProviderItems &provider_items, UploadProgress progress) { const auto &boundary = detail::make_multipart_data_boundary(); const auto &content_type = detail::serialize_multipart_formdata_get_content_type(boundary); return send_with_content_provider( "PATCH", path, headers, nullptr, 0, nullptr, get_multipart_content_provider(boundary, items, provider_items), content_type, progress); } Result ClientImpl::Patch(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, ContentReceiver content_receiver, DownloadProgress progress) { Request req; req.method = "PATCH"; req.path = path; req.headers = headers; req.body = body; req.content_receiver = [content_receiver](const char *data, size_t data_length, size_t /*offset*/, size_t /*total_length*/) { return content_receiver(data, data_length); }; req.download_progress = std::move(progress); if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } if (!content_type.empty()) { req.set_header("Content-Type", content_type); } return send_(std::move(req)); } Result ClientImpl::Delete(const std::string &path, DownloadProgress progress) { return Delete(path, Headers(), std::string(), std::string(), progress); } Result ClientImpl::Delete(const std::string &path, const Headers &headers, DownloadProgress progress) { return Delete(path, headers, std::string(), std::string(), progress); } Result ClientImpl::Delete(const std::string &path, const char *body, size_t content_length, const std::string &content_type, DownloadProgress progress) { return Delete(path, Headers(), body, content_length, content_type, progress); } Result ClientImpl::Delete(const std::string &path, const std::string &body, const std::string &content_type, DownloadProgress progress) { return Delete(path, Headers(), body.data(), body.size(), content_type, progress); } Result ClientImpl::Delete(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, DownloadProgress progress) { return Delete(path, headers, body.data(), body.size(), content_type, progress); } Result ClientImpl::Delete(const std::string &path, const Params ¶ms, DownloadProgress progress) { return Delete(path, Headers(), params, progress); } Result ClientImpl::Delete(const std::string &path, const Headers &headers, const Params ¶ms, DownloadProgress progress) { auto query = detail::params_to_query_str(params); return Delete(path, headers, query, "application/x-www-form-urlencoded", progress); } Result ClientImpl::Delete(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, DownloadProgress progress) { Request req; req.method = "DELETE"; req.headers = headers; req.path = path; req.download_progress = std::move(progress); if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } if (!content_type.empty()) { req.set_header("Content-Type", content_type); } req.body.assign(body, content_length); return send_(std::move(req)); } Result ClientImpl::Options(const std::string &path) { return Options(path, Headers()); } Result ClientImpl::Options(const std::string &path, const Headers &headers) { Request req; req.method = "OPTIONS"; req.headers = headers; req.path = path; if (max_timeout_msec_ > 0) { req.start_time_ = std::chrono::steady_clock::now(); } return send_(std::move(req)); } void ClientImpl::stop() { std::lock_guard guard(socket_mutex_); // If there is anything ongoing right now, the ONLY thread-safe thing we can // do is to shutdown_socket, so that threads using this socket suddenly // discover they can't read/write any more and error out. Everything else // (closing the socket, shutting ssl down) is unsafe because these actions // are not thread-safe. if (socket_requests_in_flight_ > 0) { shutdown_socket(socket_); // Aside from that, we set a flag for the socket to be closed when we're // done. socket_should_be_closed_when_request_is_done_ = true; return; } // Otherwise, still holding the mutex, we can shut everything down ourselves shutdown_ssl(socket_, true); shutdown_socket(socket_); close_socket(socket_); } std::string ClientImpl::host() const { return host_; } int ClientImpl::port() const { return port_; } size_t ClientImpl::is_socket_open() const { std::lock_guard guard(socket_mutex_); return socket_.is_open(); } socket_t ClientImpl::socket() const { return socket_.sock; } void ClientImpl::set_connection_timeout(time_t sec, time_t usec) { connection_timeout_sec_ = sec; connection_timeout_usec_ = usec; } void ClientImpl::set_read_timeout(time_t sec, time_t usec) { read_timeout_sec_ = sec; read_timeout_usec_ = usec; } void ClientImpl::set_write_timeout(time_t sec, time_t usec) { write_timeout_sec_ = sec; write_timeout_usec_ = usec; } void ClientImpl::set_max_timeout(time_t msec) { max_timeout_msec_ = msec; } void ClientImpl::set_basic_auth(const std::string &username, const std::string &password) { basic_auth_username_ = username; basic_auth_password_ = password; } void ClientImpl::set_bearer_token_auth(const std::string &token) { bearer_token_auth_token_ = token; } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT void ClientImpl::set_digest_auth(const std::string &username, const std::string &password) { digest_auth_username_ = username; digest_auth_password_ = password; } #endif void ClientImpl::set_keep_alive(bool on) { keep_alive_ = on; } void ClientImpl::set_follow_location(bool on) { follow_location_ = on; } void ClientImpl::set_path_encode(bool on) { path_encode_ = on; } void ClientImpl::set_hostname_addr_map(std::map addr_map) { addr_map_ = std::move(addr_map); } void ClientImpl::set_default_headers(Headers headers) { default_headers_ = std::move(headers); } void ClientImpl::set_header_writer( std::function const &writer) { header_writer_ = writer; } void ClientImpl::set_address_family(int family) { address_family_ = family; } void ClientImpl::set_tcp_nodelay(bool on) { tcp_nodelay_ = on; } void ClientImpl::set_ipv6_v6only(bool on) { ipv6_v6only_ = on; } void ClientImpl::set_socket_options(SocketOptions socket_options) { socket_options_ = std::move(socket_options); } void ClientImpl::set_compress(bool on) { compress_ = on; } void ClientImpl::set_decompress(bool on) { decompress_ = on; } void ClientImpl::set_interface(const std::string &intf) { interface_ = intf; } void ClientImpl::set_proxy(const std::string &host, int port) { proxy_host_ = host; proxy_port_ = port; } void ClientImpl::set_proxy_basic_auth(const std::string &username, const std::string &password) { proxy_basic_auth_username_ = username; proxy_basic_auth_password_ = password; } void ClientImpl::set_proxy_bearer_token_auth(const std::string &token) { proxy_bearer_token_auth_token_ = token; } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT void ClientImpl::set_proxy_digest_auth(const std::string &username, const std::string &password) { proxy_digest_auth_username_ = username; proxy_digest_auth_password_ = password; } void ClientImpl::set_ca_cert_path(const std::string &ca_cert_file_path, const std::string &ca_cert_dir_path) { ca_cert_file_path_ = ca_cert_file_path; ca_cert_dir_path_ = ca_cert_dir_path; } void ClientImpl::set_ca_cert_store(X509_STORE *ca_cert_store) { if (ca_cert_store && ca_cert_store != ca_cert_store_) { ca_cert_store_ = ca_cert_store; } } X509_STORE *ClientImpl::create_ca_cert_store(const char *ca_cert, std::size_t size) const { auto mem = BIO_new_mem_buf(ca_cert, static_cast(size)); auto se = detail::scope_exit([&] { BIO_free_all(mem); }); if (!mem) { return nullptr; } auto inf = PEM_X509_INFO_read_bio(mem, nullptr, nullptr, nullptr); if (!inf) { return nullptr; } auto cts = X509_STORE_new(); if (cts) { for (auto i = 0; i < static_cast(sk_X509_INFO_num(inf)); i++) { auto itmp = sk_X509_INFO_value(inf, i); if (!itmp) { continue; } if (itmp->x509) { X509_STORE_add_cert(cts, itmp->x509); } if (itmp->crl) { X509_STORE_add_crl(cts, itmp->crl); } } } sk_X509_INFO_pop_free(inf, X509_INFO_free); return cts; } void ClientImpl::enable_server_certificate_verification(bool enabled) { server_certificate_verification_ = enabled; } void ClientImpl::enable_server_hostname_verification(bool enabled) { server_hostname_verification_ = enabled; } void ClientImpl::set_server_certificate_verifier( std::function verifier) { server_certificate_verifier_ = verifier; } #endif void ClientImpl::set_logger(Logger logger) { logger_ = std::move(logger); } void ClientImpl::set_error_logger(ErrorLogger error_logger) { error_logger_ = std::move(error_logger); } /* * SSL Implementation */ #ifdef CPPHTTPLIB_OPENSSL_SUPPORT namespace detail { bool is_ip_address(const std::string &host) { struct in_addr addr4; struct in6_addr addr6; return inet_pton(AF_INET, host.c_str(), &addr4) == 1 || inet_pton(AF_INET6, host.c_str(), &addr6) == 1; } template SSL *ssl_new(socket_t sock, SSL_CTX *ctx, std::mutex &ctx_mutex, U SSL_connect_or_accept, V setup) { SSL *ssl = nullptr; { std::lock_guard guard(ctx_mutex); ssl = SSL_new(ctx); } if (ssl) { set_nonblocking(sock, true); auto bio = BIO_new_socket(static_cast(sock), BIO_NOCLOSE); BIO_set_nbio(bio, 1); SSL_set_bio(ssl, bio, bio); if (!setup(ssl) || SSL_connect_or_accept(ssl) != 1) { SSL_shutdown(ssl); { std::lock_guard guard(ctx_mutex); SSL_free(ssl); } set_nonblocking(sock, false); return nullptr; } BIO_set_nbio(bio, 0); set_nonblocking(sock, false); } return ssl; } void ssl_delete(std::mutex &ctx_mutex, SSL *ssl, socket_t sock, bool shutdown_gracefully) { // sometimes we may want to skip this to try to avoid SIGPIPE if we know // the remote has closed the network connection // Note that it is not always possible to avoid SIGPIPE, this is merely a // best-efforts. if (shutdown_gracefully) { (void)(sock); // SSL_shutdown() returns 0 on first call (indicating close_notify alert // sent) and 1 on subsequent call (indicating close_notify alert received) if (SSL_shutdown(ssl) == 0) { // Expected to return 1, but even if it doesn't, we free ssl SSL_shutdown(ssl); } } std::lock_guard guard(ctx_mutex); SSL_free(ssl); } template bool ssl_connect_or_accept_nonblocking(socket_t sock, SSL *ssl, U ssl_connect_or_accept, time_t timeout_sec, time_t timeout_usec, int *ssl_error) { auto res = 0; while ((res = ssl_connect_or_accept(ssl)) != 1) { auto err = SSL_get_error(ssl, res); switch (err) { case SSL_ERROR_WANT_READ: if (select_read(sock, timeout_sec, timeout_usec) > 0) { continue; } break; case SSL_ERROR_WANT_WRITE: if (select_write(sock, timeout_sec, timeout_usec) > 0) { continue; } break; default: break; } if (ssl_error) { *ssl_error = err; } return false; } return true; } template bool process_server_socket_ssl( const std::atomic &svr_sock, SSL *ssl, socket_t sock, size_t keep_alive_max_count, time_t keep_alive_timeout_sec, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, T callback) { return process_server_socket_core( svr_sock, sock, keep_alive_max_count, keep_alive_timeout_sec, [&](bool close_connection, bool &connection_closed) { SSLSocketStream strm(sock, ssl, read_timeout_sec, read_timeout_usec, write_timeout_sec, write_timeout_usec); return callback(strm, close_connection, connection_closed); }); } template bool process_client_socket_ssl( SSL *ssl, socket_t sock, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, time_t max_timeout_msec, std::chrono::time_point start_time, T callback) { SSLSocketStream strm(sock, ssl, read_timeout_sec, read_timeout_usec, write_timeout_sec, write_timeout_usec, max_timeout_msec, start_time); return callback(strm); } // SSL socket stream implementation SSLSocketStream::SSLSocketStream( socket_t sock, SSL *ssl, time_t read_timeout_sec, time_t read_timeout_usec, time_t write_timeout_sec, time_t write_timeout_usec, time_t max_timeout_msec, std::chrono::time_point start_time) : sock_(sock), ssl_(ssl), read_timeout_sec_(read_timeout_sec), read_timeout_usec_(read_timeout_usec), write_timeout_sec_(write_timeout_sec), write_timeout_usec_(write_timeout_usec), max_timeout_msec_(max_timeout_msec), start_time_(start_time) { SSL_clear_mode(ssl, SSL_MODE_AUTO_RETRY); } SSLSocketStream::~SSLSocketStream() = default; bool SSLSocketStream::is_readable() const { return SSL_pending(ssl_) > 0; } bool SSLSocketStream::wait_readable() const { if (max_timeout_msec_ <= 0) { return select_read(sock_, read_timeout_sec_, read_timeout_usec_) > 0; } time_t read_timeout_sec; time_t read_timeout_usec; calc_actual_timeout(max_timeout_msec_, duration(), read_timeout_sec_, read_timeout_usec_, read_timeout_sec, read_timeout_usec); return select_read(sock_, read_timeout_sec, read_timeout_usec) > 0; } bool SSLSocketStream::wait_writable() const { return select_write(sock_, write_timeout_sec_, write_timeout_usec_) > 0 && is_socket_alive(sock_) && !is_ssl_peer_could_be_closed(ssl_, sock_); } ssize_t SSLSocketStream::read(char *ptr, size_t size) { if (SSL_pending(ssl_) > 0) { return SSL_read(ssl_, ptr, static_cast(size)); } else if (wait_readable()) { auto ret = SSL_read(ssl_, ptr, static_cast(size)); if (ret < 0) { auto err = SSL_get_error(ssl_, ret); auto n = 1000; #ifdef _WIN32 while (--n >= 0 && (err == SSL_ERROR_WANT_READ || (err == SSL_ERROR_SYSCALL && WSAGetLastError() == WSAETIMEDOUT))) { #else while (--n >= 0 && err == SSL_ERROR_WANT_READ) { #endif if (SSL_pending(ssl_) > 0) { return SSL_read(ssl_, ptr, static_cast(size)); } else if (wait_readable()) { std::this_thread::sleep_for(std::chrono::microseconds{10}); ret = SSL_read(ssl_, ptr, static_cast(size)); if (ret >= 0) { return ret; } err = SSL_get_error(ssl_, ret); } else { break; } } assert(ret < 0); } return ret; } else { return -1; } } ssize_t SSLSocketStream::write(const char *ptr, size_t size) { if (wait_writable()) { auto handle_size = static_cast( std::min(size, (std::numeric_limits::max)())); auto ret = SSL_write(ssl_, ptr, static_cast(handle_size)); if (ret < 0) { auto err = SSL_get_error(ssl_, ret); auto n = 1000; #ifdef _WIN32 while (--n >= 0 && (err == SSL_ERROR_WANT_WRITE || (err == SSL_ERROR_SYSCALL && WSAGetLastError() == WSAETIMEDOUT))) { #else while (--n >= 0 && err == SSL_ERROR_WANT_WRITE) { #endif if (wait_writable()) { std::this_thread::sleep_for(std::chrono::microseconds{10}); ret = SSL_write(ssl_, ptr, static_cast(handle_size)); if (ret >= 0) { return ret; } err = SSL_get_error(ssl_, ret); } else { break; } } assert(ret < 0); } return ret; } return -1; } void SSLSocketStream::get_remote_ip_and_port(std::string &ip, int &port) const { detail::get_remote_ip_and_port(sock_, ip, port); } void SSLSocketStream::get_local_ip_and_port(std::string &ip, int &port) const { detail::get_local_ip_and_port(sock_, ip, port); } socket_t SSLSocketStream::socket() const { return sock_; } time_t SSLSocketStream::duration() const { return std::chrono::duration_cast( std::chrono::steady_clock::now() - start_time_) .count(); } } // namespace detail // SSL HTTP server implementation SSLServer::SSLServer(const char *cert_path, const char *private_key_path, const char *client_ca_cert_file_path, const char *client_ca_cert_dir_path, const char *private_key_password) { ctx_ = SSL_CTX_new(TLS_server_method()); if (ctx_) { SSL_CTX_set_options(ctx_, SSL_OP_NO_COMPRESSION | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION); SSL_CTX_set_min_proto_version(ctx_, TLS1_2_VERSION); if (private_key_password != nullptr && (private_key_password[0] != '\0')) { SSL_CTX_set_default_passwd_cb_userdata( ctx_, reinterpret_cast(const_cast(private_key_password))); } if (SSL_CTX_use_certificate_chain_file(ctx_, cert_path) != 1 || SSL_CTX_use_PrivateKey_file(ctx_, private_key_path, SSL_FILETYPE_PEM) != 1 || SSL_CTX_check_private_key(ctx_) != 1) { last_ssl_error_ = static_cast(ERR_get_error()); SSL_CTX_free(ctx_); ctx_ = nullptr; } else if (client_ca_cert_file_path || client_ca_cert_dir_path) { SSL_CTX_load_verify_locations(ctx_, client_ca_cert_file_path, client_ca_cert_dir_path); // Set client CA list to be sent to clients during TLS handshake if (client_ca_cert_file_path) { auto ca_list = SSL_load_client_CA_file(client_ca_cert_file_path); if (ca_list != nullptr) { SSL_CTX_set_client_CA_list(ctx_, ca_list); } else { // Failed to load client CA list, but we continue since // SSL_CTX_load_verify_locations already succeeded and // certificate verification will still work last_ssl_error_ = static_cast(ERR_get_error()); } } SSL_CTX_set_verify( ctx_, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); } } } SSLServer::SSLServer(X509 *cert, EVP_PKEY *private_key, X509_STORE *client_ca_cert_store) { ctx_ = SSL_CTX_new(TLS_server_method()); if (ctx_) { SSL_CTX_set_options(ctx_, SSL_OP_NO_COMPRESSION | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION); SSL_CTX_set_min_proto_version(ctx_, TLS1_2_VERSION); if (SSL_CTX_use_certificate(ctx_, cert) != 1 || SSL_CTX_use_PrivateKey(ctx_, private_key) != 1) { SSL_CTX_free(ctx_); ctx_ = nullptr; } else if (client_ca_cert_store) { SSL_CTX_set_cert_store(ctx_, client_ca_cert_store); // Extract CA names from the store and set them as the client CA list auto ca_list = extract_ca_names_from_x509_store(client_ca_cert_store); if (ca_list) { SSL_CTX_set_client_CA_list(ctx_, ca_list); } else { // Failed to extract CA names, record the error last_ssl_error_ = static_cast(ERR_get_error()); } SSL_CTX_set_verify( ctx_, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); } } } SSLServer::SSLServer( const std::function &setup_ssl_ctx_callback) { ctx_ = SSL_CTX_new(TLS_method()); if (ctx_) { if (!setup_ssl_ctx_callback(*ctx_)) { SSL_CTX_free(ctx_); ctx_ = nullptr; } } } SSLServer::~SSLServer() { if (ctx_) { SSL_CTX_free(ctx_); } } bool SSLServer::is_valid() const { return ctx_; } SSL_CTX *SSLServer::ssl_context() const { return ctx_; } void SSLServer::update_certs(X509 *cert, EVP_PKEY *private_key, X509_STORE *client_ca_cert_store) { std::lock_guard guard(ctx_mutex_); SSL_CTX_use_certificate(ctx_, cert); SSL_CTX_use_PrivateKey(ctx_, private_key); if (client_ca_cert_store != nullptr) { SSL_CTX_set_cert_store(ctx_, client_ca_cert_store); } } bool SSLServer::process_and_close_socket(socket_t sock) { auto ssl = detail::ssl_new( sock, ctx_, ctx_mutex_, [&](SSL *ssl2) { return detail::ssl_connect_or_accept_nonblocking( sock, ssl2, SSL_accept, read_timeout_sec_, read_timeout_usec_, &last_ssl_error_); }, [](SSL * /*ssl2*/) { return true; }); auto ret = false; if (ssl) { std::string remote_addr; int remote_port = 0; detail::get_remote_ip_and_port(sock, remote_addr, remote_port); std::string local_addr; int local_port = 0; detail::get_local_ip_and_port(sock, local_addr, local_port); ret = detail::process_server_socket_ssl( svr_sock_, ssl, sock, keep_alive_max_count_, keep_alive_timeout_sec_, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, [&](Stream &strm, bool close_connection, bool &connection_closed) { return process_request(strm, remote_addr, remote_port, local_addr, local_port, close_connection, connection_closed, [&](Request &req) { req.ssl = ssl; }); }); // Shutdown gracefully if the result seemed successful, non-gracefully if // the connection appeared to be closed. const bool shutdown_gracefully = ret; detail::ssl_delete(ctx_mutex_, ssl, sock, shutdown_gracefully); } detail::shutdown_socket(sock); detail::close_socket(sock); return ret; } STACK_OF(X509_NAME) * SSLServer::extract_ca_names_from_x509_store( X509_STORE *store) { if (!store) { return nullptr; } auto ca_list = sk_X509_NAME_new_null(); if (!ca_list) { return nullptr; } // Get all objects from the store auto objs = X509_STORE_get0_objects(store); if (!objs) { sk_X509_NAME_free(ca_list); return nullptr; } // Iterate through objects and extract certificate subject names for (int i = 0; i < sk_X509_OBJECT_num(objs); i++) { auto obj = sk_X509_OBJECT_value(objs, i); if (X509_OBJECT_get_type(obj) == X509_LU_X509) { auto cert = X509_OBJECT_get0_X509(obj); if (cert) { auto subject = X509_get_subject_name(cert); if (subject) { auto name_dup = X509_NAME_dup(subject); if (name_dup) { sk_X509_NAME_push(ca_list, name_dup); } } } } } // If no names were extracted, free the list and return nullptr if (sk_X509_NAME_num(ca_list) == 0) { sk_X509_NAME_free(ca_list); return nullptr; } return ca_list; } // SSL HTTP client implementation SSLClient::SSLClient(const std::string &host) : SSLClient(host, 443, std::string(), std::string()) {} SSLClient::SSLClient(const std::string &host, int port) : SSLClient(host, port, std::string(), std::string()) {} SSLClient::SSLClient(const std::string &host, int port, const std::string &client_cert_path, const std::string &client_key_path, const std::string &private_key_password) : ClientImpl(host, port, client_cert_path, client_key_path) { ctx_ = SSL_CTX_new(TLS_client_method()); SSL_CTX_set_min_proto_version(ctx_, TLS1_2_VERSION); detail::split(&host_[0], &host_[host_.size()], '.', [&](const char *b, const char *e) { host_components_.emplace_back(b, e); }); if (!client_cert_path.empty() && !client_key_path.empty()) { if (!private_key_password.empty()) { SSL_CTX_set_default_passwd_cb_userdata( ctx_, reinterpret_cast( const_cast(private_key_password.c_str()))); } if (SSL_CTX_use_certificate_file(ctx_, client_cert_path.c_str(), SSL_FILETYPE_PEM) != 1 || SSL_CTX_use_PrivateKey_file(ctx_, client_key_path.c_str(), SSL_FILETYPE_PEM) != 1) { last_openssl_error_ = ERR_get_error(); SSL_CTX_free(ctx_); ctx_ = nullptr; } } } SSLClient::SSLClient(const std::string &host, int port, X509 *client_cert, EVP_PKEY *client_key, const std::string &private_key_password) : ClientImpl(host, port) { ctx_ = SSL_CTX_new(TLS_client_method()); detail::split(&host_[0], &host_[host_.size()], '.', [&](const char *b, const char *e) { host_components_.emplace_back(b, e); }); if (client_cert != nullptr && client_key != nullptr) { if (!private_key_password.empty()) { SSL_CTX_set_default_passwd_cb_userdata( ctx_, reinterpret_cast( const_cast(private_key_password.c_str()))); } if (SSL_CTX_use_certificate(ctx_, client_cert) != 1 || SSL_CTX_use_PrivateKey(ctx_, client_key) != 1) { last_openssl_error_ = ERR_get_error(); SSL_CTX_free(ctx_); ctx_ = nullptr; } } } SSLClient::~SSLClient() { if (ctx_) { SSL_CTX_free(ctx_); } // Make sure to shut down SSL since shutdown_ssl will resolve to the // base function rather than the derived function once we get to the // base class destructor, and won't free the SSL (causing a leak). shutdown_ssl_impl(socket_, true); } bool SSLClient::is_valid() const { return ctx_; } void SSLClient::set_ca_cert_store(X509_STORE *ca_cert_store) { if (ca_cert_store) { if (ctx_) { if (SSL_CTX_get_cert_store(ctx_) != ca_cert_store) { // Free memory allocated for old cert and use new store // `ca_cert_store` SSL_CTX_set_cert_store(ctx_, ca_cert_store); ca_cert_store_ = ca_cert_store; } } else { X509_STORE_free(ca_cert_store); } } } void SSLClient::load_ca_cert_store(const char *ca_cert, std::size_t size) { set_ca_cert_store(ClientImpl::create_ca_cert_store(ca_cert, size)); } long SSLClient::get_openssl_verify_result() const { return verify_result_; } SSL_CTX *SSLClient::ssl_context() const { return ctx_; } bool SSLClient::create_and_connect_socket(Socket &socket, Error &error) { if (!is_valid()) { error = Error::SSLConnection; return false; } return ClientImpl::create_and_connect_socket(socket, error); } // Assumes that socket_mutex_ is locked and that there are no requests in // flight bool SSLClient::connect_with_proxy( Socket &socket, std::chrono::time_point start_time, Response &res, bool &success, Error &error) { success = true; Response proxy_res; if (!detail::process_client_socket( socket.sock, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, max_timeout_msec_, start_time, [&](Stream &strm) { Request req2; req2.method = "CONNECT"; req2.path = host_and_port_; if (max_timeout_msec_ > 0) { req2.start_time_ = std::chrono::steady_clock::now(); } return process_request(strm, req2, proxy_res, false, error); })) { // Thread-safe to close everything because we are assuming there are no // requests in flight shutdown_ssl(socket, true); shutdown_socket(socket); close_socket(socket); success = false; return false; } if (proxy_res.status == StatusCode::ProxyAuthenticationRequired_407) { if (!proxy_digest_auth_username_.empty() && !proxy_digest_auth_password_.empty()) { std::map auth; if (detail::parse_www_authenticate(proxy_res, auth, true)) { // Close the current socket and create a new one for the authenticated // request shutdown_ssl(socket, true); shutdown_socket(socket); close_socket(socket); // Create a new socket for the authenticated CONNECT request if (!create_and_connect_socket(socket, error)) { success = false; output_error_log(error, nullptr); return false; } proxy_res = Response(); if (!detail::process_client_socket( socket.sock, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, max_timeout_msec_, start_time, [&](Stream &strm) { Request req3; req3.method = "CONNECT"; req3.path = host_and_port_; req3.headers.insert(detail::make_digest_authentication_header( req3, auth, 1, detail::random_string(10), proxy_digest_auth_username_, proxy_digest_auth_password_, true)); if (max_timeout_msec_ > 0) { req3.start_time_ = std::chrono::steady_clock::now(); } return process_request(strm, req3, proxy_res, false, error); })) { // Thread-safe to close everything because we are assuming there are // no requests in flight shutdown_ssl(socket, true); shutdown_socket(socket); close_socket(socket); success = false; return false; } } } } // If status code is not 200, proxy request is failed. // Set error to ProxyConnection and return proxy response // as the response of the request if (proxy_res.status != StatusCode::OK_200) { error = Error::ProxyConnection; output_error_log(error, nullptr); res = std::move(proxy_res); // Thread-safe to close everything because we are assuming there are // no requests in flight shutdown_ssl(socket, true); shutdown_socket(socket); close_socket(socket); return false; } return true; } bool SSLClient::load_certs() { auto ret = true; std::call_once(initialize_cert_, [&]() { std::lock_guard guard(ctx_mutex_); if (!ca_cert_file_path_.empty()) { if (!SSL_CTX_load_verify_locations(ctx_, ca_cert_file_path_.c_str(), nullptr)) { last_openssl_error_ = ERR_get_error(); ret = false; } } else if (!ca_cert_dir_path_.empty()) { if (!SSL_CTX_load_verify_locations(ctx_, nullptr, ca_cert_dir_path_.c_str())) { last_openssl_error_ = ERR_get_error(); ret = false; } } else { auto loaded = false; #ifdef _WIN32 loaded = detail::load_system_certs_on_windows(SSL_CTX_get_cert_store(ctx_)); #elif defined(CPPHTTPLIB_USE_CERTS_FROM_MACOSX_KEYCHAIN) && TARGET_OS_MAC loaded = detail::load_system_certs_on_macos(SSL_CTX_get_cert_store(ctx_)); #endif // _WIN32 if (!loaded) { SSL_CTX_set_default_verify_paths(ctx_); } } }); return ret; } bool SSLClient::initialize_ssl(Socket &socket, Error &error) { auto ssl = detail::ssl_new( socket.sock, ctx_, ctx_mutex_, [&](SSL *ssl2) { if (server_certificate_verification_) { if (!load_certs()) { error = Error::SSLLoadingCerts; output_error_log(error, nullptr); return false; } SSL_set_verify(ssl2, SSL_VERIFY_NONE, nullptr); } if (!detail::ssl_connect_or_accept_nonblocking( socket.sock, ssl2, SSL_connect, connection_timeout_sec_, connection_timeout_usec_, &last_ssl_error_)) { error = Error::SSLConnection; output_error_log(error, nullptr); return false; } if (server_certificate_verification_) { auto verification_status = SSLVerifierResponse::NoDecisionMade; if (server_certificate_verifier_) { verification_status = server_certificate_verifier_(ssl2); } if (verification_status == SSLVerifierResponse::CertificateRejected) { last_openssl_error_ = ERR_get_error(); error = Error::SSLServerVerification; output_error_log(error, nullptr); return false; } if (verification_status == SSLVerifierResponse::NoDecisionMade) { verify_result_ = SSL_get_verify_result(ssl2); if (verify_result_ != X509_V_OK) { last_openssl_error_ = static_cast(verify_result_); error = Error::SSLServerVerification; output_error_log(error, nullptr); return false; } auto server_cert = SSL_get1_peer_certificate(ssl2); auto se = detail::scope_exit([&] { X509_free(server_cert); }); if (server_cert == nullptr) { last_openssl_error_ = ERR_get_error(); error = Error::SSLServerVerification; output_error_log(error, nullptr); return false; } if (server_hostname_verification_) { if (!verify_host(server_cert)) { last_openssl_error_ = X509_V_ERR_HOSTNAME_MISMATCH; error = Error::SSLServerHostnameVerification; output_error_log(error, nullptr); return false; } } } } return true; }, [&](SSL *ssl2) { // Set SNI only if host is not IP address if (!detail::is_ip_address(host_)) { #if defined(OPENSSL_IS_BORINGSSL) SSL_set_tlsext_host_name(ssl2, host_.c_str()); #else // NOTE: Direct call instead of using the OpenSSL macro to suppress // -Wold-style-cast warning SSL_ctrl(ssl2, SSL_CTRL_SET_TLSEXT_HOSTNAME, TLSEXT_NAMETYPE_host_name, static_cast(const_cast(host_.c_str()))); #endif } return true; }); if (ssl) { socket.ssl = ssl; return true; } if (ctx_ == nullptr) { error = Error::SSLConnection; last_openssl_error_ = ERR_get_error(); } shutdown_socket(socket); close_socket(socket); return false; } void SSLClient::shutdown_ssl(Socket &socket, bool shutdown_gracefully) { shutdown_ssl_impl(socket, shutdown_gracefully); } void SSLClient::shutdown_ssl_impl(Socket &socket, bool shutdown_gracefully) { if (socket.sock == INVALID_SOCKET) { assert(socket.ssl == nullptr); return; } if (socket.ssl) { detail::ssl_delete(ctx_mutex_, socket.ssl, socket.sock, shutdown_gracefully); socket.ssl = nullptr; } assert(socket.ssl == nullptr); } bool SSLClient::process_socket( const Socket &socket, std::chrono::time_point start_time, std::function callback) { assert(socket.ssl); return detail::process_client_socket_ssl( socket.ssl, socket.sock, read_timeout_sec_, read_timeout_usec_, write_timeout_sec_, write_timeout_usec_, max_timeout_msec_, start_time, std::move(callback)); } bool SSLClient::is_ssl() const { return true; } bool SSLClient::verify_host(X509 *server_cert) const { /* Quote from RFC2818 section 3.1 "Server Identity" If a subjectAltName extension of type dNSName is present, that MUST be used as the identity. Otherwise, the (most specific) Common Name field in the Subject field of the certificate MUST be used. Although the use of the Common Name is existing practice, it is deprecated and Certification Authorities are encouraged to use the dNSName instead. Matching is performed using the matching rules specified by [RFC2459]. If more than one identity of a given type is present in the certificate (e.g., more than one dNSName name, a match in any one of the set is considered acceptable.) Names may contain the wildcard character * which is considered to match any single domain name component or component fragment. E.g., *.a.com matches foo.a.com but not bar.foo.a.com. f*.com matches foo.com but not bar.com. In some cases, the URI is specified as an IP address rather than a hostname. In this case, the iPAddress subjectAltName must be present in the certificate and must exactly match the IP in the URI. */ return verify_host_with_subject_alt_name(server_cert) || verify_host_with_common_name(server_cert); } bool SSLClient::verify_host_with_subject_alt_name(X509 *server_cert) const { auto ret = false; auto type = GEN_DNS; struct in6_addr addr6 = {}; struct in_addr addr = {}; size_t addr_len = 0; #ifndef __MINGW32__ if (inet_pton(AF_INET6, host_.c_str(), &addr6)) { type = GEN_IPADD; addr_len = sizeof(struct in6_addr); } else if (inet_pton(AF_INET, host_.c_str(), &addr)) { type = GEN_IPADD; addr_len = sizeof(struct in_addr); } #endif auto alt_names = static_cast( X509_get_ext_d2i(server_cert, NID_subject_alt_name, nullptr, nullptr)); if (alt_names) { auto dsn_matched = false; auto ip_matched = false; auto count = sk_GENERAL_NAME_num(alt_names); for (decltype(count) i = 0; i < count && !dsn_matched; i++) { auto val = sk_GENERAL_NAME_value(alt_names, i); if (!val || val->type != type) { continue; } auto name = reinterpret_cast(ASN1_STRING_get0_data(val->d.ia5)); if (name == nullptr) { continue; } auto name_len = static_cast(ASN1_STRING_length(val->d.ia5)); switch (type) { case GEN_DNS: dsn_matched = check_host_name(name, name_len); break; case GEN_IPADD: if (!memcmp(&addr6, name, addr_len) || !memcmp(&addr, name, addr_len)) { ip_matched = true; } break; } } if (dsn_matched || ip_matched) { ret = true; } } GENERAL_NAMES_free(const_cast( reinterpret_cast(alt_names))); return ret; } bool SSLClient::verify_host_with_common_name(X509 *server_cert) const { const auto subject_name = X509_get_subject_name(server_cert); if (subject_name != nullptr) { char name[BUFSIZ]; auto name_len = X509_NAME_get_text_by_NID(subject_name, NID_commonName, name, sizeof(name)); if (name_len != -1) { return check_host_name(name, static_cast(name_len)); } } return false; } bool SSLClient::check_host_name(const char *pattern, size_t pattern_len) const { if (host_.size() == pattern_len && host_ == pattern) { return true; } // Wildcard match // https://bugs.launchpad.net/ubuntu/+source/firefox-3.0/+bug/376484 std::vector pattern_components; detail::split(&pattern[0], &pattern[pattern_len], '.', [&](const char *b, const char *e) { pattern_components.emplace_back(b, e); }); if (host_components_.size() != pattern_components.size()) { return false; } auto itr = pattern_components.begin(); for (const auto &h : host_components_) { auto &p = *itr; if (p != h && p != "*") { auto partial_match = (p.size() > 0 && p[p.size() - 1] == '*' && !p.compare(0, p.size() - 1, h)); if (!partial_match) { return false; } } ++itr; } return true; } #endif // Universal client implementation Client::Client(const std::string &scheme_host_port) : Client(scheme_host_port, std::string(), std::string()) {} Client::Client(const std::string &scheme_host_port, const std::string &client_cert_path, const std::string &client_key_path) { const static std::regex re( R"((?:([a-z]+):\/\/)?(?:\[([a-fA-F\d:]+)\]|([^:/?#]+))(?::(\d+))?)"); std::smatch m; if (std::regex_match(scheme_host_port, m, re)) { auto scheme = m[1].str(); #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (!scheme.empty() && (scheme != "http" && scheme != "https")) { #else if (!scheme.empty() && scheme != "http") { #endif #ifndef CPPHTTPLIB_NO_EXCEPTIONS std::string msg = "'" + scheme + "' scheme is not supported."; throw std::invalid_argument(msg); #endif return; } auto is_ssl = scheme == "https"; auto host = m[2].str(); if (host.empty()) { host = m[3].str(); } auto port_str = m[4].str(); auto port = !port_str.empty() ? std::stoi(port_str) : (is_ssl ? 443 : 80); if (is_ssl) { #ifdef CPPHTTPLIB_OPENSSL_SUPPORT cli_ = detail::make_unique(host, port, client_cert_path, client_key_path); is_ssl_ = is_ssl; #endif } else { cli_ = detail::make_unique(host, port, client_cert_path, client_key_path); } } else { // NOTE: Update TEST(UniversalClientImplTest, Ipv6LiteralAddress) // if port param below changes. cli_ = detail::make_unique(scheme_host_port, 80, client_cert_path, client_key_path); } } // namespace detail Client::Client(const std::string &host, int port) : cli_(detail::make_unique(host, port)) {} Client::Client(const std::string &host, int port, const std::string &client_cert_path, const std::string &client_key_path) : cli_(detail::make_unique(host, port, client_cert_path, client_key_path)) {} Client::~Client() = default; bool Client::is_valid() const { return cli_ != nullptr && cli_->is_valid(); } Result Client::Get(const std::string &path, DownloadProgress progress) { return cli_->Get(path, std::move(progress)); } Result Client::Get(const std::string &path, const Headers &headers, DownloadProgress progress) { return cli_->Get(path, headers, std::move(progress)); } Result Client::Get(const std::string &path, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Get(path, std::move(content_receiver), std::move(progress)); } Result Client::Get(const std::string &path, const Headers &headers, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Get(path, headers, std::move(content_receiver), std::move(progress)); } Result Client::Get(const std::string &path, ResponseHandler response_handler, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Get(path, std::move(response_handler), std::move(content_receiver), std::move(progress)); } Result Client::Get(const std::string &path, const Headers &headers, ResponseHandler response_handler, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Get(path, headers, std::move(response_handler), std::move(content_receiver), std::move(progress)); } Result Client::Get(const std::string &path, const Params ¶ms, const Headers &headers, DownloadProgress progress) { return cli_->Get(path, params, headers, std::move(progress)); } Result Client::Get(const std::string &path, const Params ¶ms, const Headers &headers, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Get(path, params, headers, std::move(content_receiver), std::move(progress)); } Result Client::Get(const std::string &path, const Params ¶ms, const Headers &headers, ResponseHandler response_handler, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Get(path, params, headers, std::move(response_handler), std::move(content_receiver), std::move(progress)); } Result Client::Head(const std::string &path) { return cli_->Head(path); } Result Client::Head(const std::string &path, const Headers &headers) { return cli_->Head(path, headers); } Result Client::Post(const std::string &path) { return cli_->Post(path); } Result Client::Post(const std::string &path, const Headers &headers) { return cli_->Post(path, headers); } Result Client::Post(const std::string &path, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, body, content_length, content_type, progress); } Result Client::Post(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, headers, body, content_length, content_type, progress); } Result Client::Post(const std::string &path, const std::string &body, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, body, content_type, progress); } Result Client::Post(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, headers, body, content_type, progress); } Result Client::Post(const std::string &path, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, content_length, std::move(content_provider), content_type, progress); } Result Client::Post(const std::string &path, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, std::move(content_provider), content_type, progress); } Result Client::Post(const std::string &path, const Headers &headers, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, headers, content_length, std::move(content_provider), content_type, progress); } Result Client::Post(const std::string &path, const Headers &headers, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Post(path, headers, std::move(content_provider), content_type, progress); } Result Client::Post(const std::string &path, const Params ¶ms) { return cli_->Post(path, params); } Result Client::Post(const std::string &path, const Headers &headers, const Params ¶ms) { return cli_->Post(path, headers, params); } Result Client::Post(const std::string &path, const UploadFormDataItems &items, UploadProgress progress) { return cli_->Post(path, items, progress); } Result Client::Post(const std::string &path, const Headers &headers, const UploadFormDataItems &items, UploadProgress progress) { return cli_->Post(path, headers, items, progress); } Result Client::Post(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const std::string &boundary, UploadProgress progress) { return cli_->Post(path, headers, items, boundary, progress); } Result Client::Post(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const FormDataProviderItems &provider_items, UploadProgress progress) { return cli_->Post(path, headers, items, provider_items, progress); } Result Client::Post(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Post(path, headers, body, content_type, content_receiver, progress); } Result Client::Put(const std::string &path) { return cli_->Put(path); } Result Client::Put(const std::string &path, const Headers &headers) { return cli_->Put(path, headers); } Result Client::Put(const std::string &path, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, body, content_length, content_type, progress); } Result Client::Put(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, headers, body, content_length, content_type, progress); } Result Client::Put(const std::string &path, const std::string &body, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, body, content_type, progress); } Result Client::Put(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, headers, body, content_type, progress); } Result Client::Put(const std::string &path, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, content_length, std::move(content_provider), content_type, progress); } Result Client::Put(const std::string &path, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, std::move(content_provider), content_type, progress); } Result Client::Put(const std::string &path, const Headers &headers, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, headers, content_length, std::move(content_provider), content_type, progress); } Result Client::Put(const std::string &path, const Headers &headers, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Put(path, headers, std::move(content_provider), content_type, progress); } Result Client::Put(const std::string &path, const Params ¶ms) { return cli_->Put(path, params); } Result Client::Put(const std::string &path, const Headers &headers, const Params ¶ms) { return cli_->Put(path, headers, params); } Result Client::Put(const std::string &path, const UploadFormDataItems &items, UploadProgress progress) { return cli_->Put(path, items, progress); } Result Client::Put(const std::string &path, const Headers &headers, const UploadFormDataItems &items, UploadProgress progress) { return cli_->Put(path, headers, items, progress); } Result Client::Put(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const std::string &boundary, UploadProgress progress) { return cli_->Put(path, headers, items, boundary, progress); } Result Client::Put(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const FormDataProviderItems &provider_items, UploadProgress progress) { return cli_->Put(path, headers, items, provider_items, progress); } Result Client::Put(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Put(path, headers, body, content_type, content_receiver, progress); } Result Client::Patch(const std::string &path) { return cli_->Patch(path); } Result Client::Patch(const std::string &path, const Headers &headers) { return cli_->Patch(path, headers); } Result Client::Patch(const std::string &path, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, body, content_length, content_type, progress); } Result Client::Patch(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, headers, body, content_length, content_type, progress); } Result Client::Patch(const std::string &path, const std::string &body, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, body, content_type, progress); } Result Client::Patch(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, headers, body, content_type, progress); } Result Client::Patch(const std::string &path, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, content_length, std::move(content_provider), content_type, progress); } Result Client::Patch(const std::string &path, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, std::move(content_provider), content_type, progress); } Result Client::Patch(const std::string &path, const Headers &headers, size_t content_length, ContentProvider content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, headers, content_length, std::move(content_provider), content_type, progress); } Result Client::Patch(const std::string &path, const Headers &headers, ContentProviderWithoutLength content_provider, const std::string &content_type, UploadProgress progress) { return cli_->Patch(path, headers, std::move(content_provider), content_type, progress); } Result Client::Patch(const std::string &path, const Params ¶ms) { return cli_->Patch(path, params); } Result Client::Patch(const std::string &path, const Headers &headers, const Params ¶ms) { return cli_->Patch(path, headers, params); } Result Client::Patch(const std::string &path, const UploadFormDataItems &items, UploadProgress progress) { return cli_->Patch(path, items, progress); } Result Client::Patch(const std::string &path, const Headers &headers, const UploadFormDataItems &items, UploadProgress progress) { return cli_->Patch(path, headers, items, progress); } Result Client::Patch(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const std::string &boundary, UploadProgress progress) { return cli_->Patch(path, headers, items, boundary, progress); } Result Client::Patch(const std::string &path, const Headers &headers, const UploadFormDataItems &items, const FormDataProviderItems &provider_items, UploadProgress progress) { return cli_->Patch(path, headers, items, provider_items, progress); } Result Client::Patch(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, ContentReceiver content_receiver, DownloadProgress progress) { return cli_->Patch(path, headers, body, content_type, content_receiver, progress); } Result Client::Delete(const std::string &path, DownloadProgress progress) { return cli_->Delete(path, progress); } Result Client::Delete(const std::string &path, const Headers &headers, DownloadProgress progress) { return cli_->Delete(path, headers, progress); } Result Client::Delete(const std::string &path, const char *body, size_t content_length, const std::string &content_type, DownloadProgress progress) { return cli_->Delete(path, body, content_length, content_type, progress); } Result Client::Delete(const std::string &path, const Headers &headers, const char *body, size_t content_length, const std::string &content_type, DownloadProgress progress) { return cli_->Delete(path, headers, body, content_length, content_type, progress); } Result Client::Delete(const std::string &path, const std::string &body, const std::string &content_type, DownloadProgress progress) { return cli_->Delete(path, body, content_type, progress); } Result Client::Delete(const std::string &path, const Headers &headers, const std::string &body, const std::string &content_type, DownloadProgress progress) { return cli_->Delete(path, headers, body, content_type, progress); } Result Client::Delete(const std::string &path, const Params ¶ms, DownloadProgress progress) { return cli_->Delete(path, params, progress); } Result Client::Delete(const std::string &path, const Headers &headers, const Params ¶ms, DownloadProgress progress) { return cli_->Delete(path, headers, params, progress); } Result Client::Options(const std::string &path) { return cli_->Options(path); } Result Client::Options(const std::string &path, const Headers &headers) { return cli_->Options(path, headers); } bool Client::send(Request &req, Response &res, Error &error) { return cli_->send(req, res, error); } Result Client::send(const Request &req) { return cli_->send(req); } void Client::stop() { cli_->stop(); } std::string Client::host() const { return cli_->host(); } int Client::port() const { return cli_->port(); } size_t Client::is_socket_open() const { return cli_->is_socket_open(); } socket_t Client::socket() const { return cli_->socket(); } void Client::set_hostname_addr_map(std::map addr_map) { cli_->set_hostname_addr_map(std::move(addr_map)); } void Client::set_default_headers(Headers headers) { cli_->set_default_headers(std::move(headers)); } void Client::set_header_writer( std::function const &writer) { cli_->set_header_writer(writer); } void Client::set_address_family(int family) { cli_->set_address_family(family); } void Client::set_tcp_nodelay(bool on) { cli_->set_tcp_nodelay(on); } void Client::set_socket_options(SocketOptions socket_options) { cli_->set_socket_options(std::move(socket_options)); } void Client::set_connection_timeout(time_t sec, time_t usec) { cli_->set_connection_timeout(sec, usec); } void Client::set_read_timeout(time_t sec, time_t usec) { cli_->set_read_timeout(sec, usec); } void Client::set_write_timeout(time_t sec, time_t usec) { cli_->set_write_timeout(sec, usec); } void Client::set_basic_auth(const std::string &username, const std::string &password) { cli_->set_basic_auth(username, password); } void Client::set_bearer_token_auth(const std::string &token) { cli_->set_bearer_token_auth(token); } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT void Client::set_digest_auth(const std::string &username, const std::string &password) { cli_->set_digest_auth(username, password); } #endif void Client::set_keep_alive(bool on) { cli_->set_keep_alive(on); } void Client::set_follow_location(bool on) { cli_->set_follow_location(on); } void Client::set_path_encode(bool on) { cli_->set_path_encode(on); } [[deprecated("Use set_path_encode instead")]] void Client::set_url_encode(bool on) { cli_->set_path_encode(on); } void Client::set_compress(bool on) { cli_->set_compress(on); } void Client::set_decompress(bool on) { cli_->set_decompress(on); } void Client::set_interface(const std::string &intf) { cli_->set_interface(intf); } void Client::set_proxy(const std::string &host, int port) { cli_->set_proxy(host, port); } void Client::set_proxy_basic_auth(const std::string &username, const std::string &password) { cli_->set_proxy_basic_auth(username, password); } void Client::set_proxy_bearer_token_auth(const std::string &token) { cli_->set_proxy_bearer_token_auth(token); } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT void Client::set_proxy_digest_auth(const std::string &username, const std::string &password) { cli_->set_proxy_digest_auth(username, password); } #endif #ifdef CPPHTTPLIB_OPENSSL_SUPPORT void Client::enable_server_certificate_verification(bool enabled) { cli_->enable_server_certificate_verification(enabled); } void Client::enable_server_hostname_verification(bool enabled) { cli_->enable_server_hostname_verification(enabled); } void Client::set_server_certificate_verifier( std::function verifier) { cli_->set_server_certificate_verifier(verifier); } #endif void Client::set_logger(Logger logger) { cli_->set_logger(std::move(logger)); } void Client::set_error_logger(ErrorLogger error_logger) { cli_->set_error_logger(std::move(error_logger)); } #ifdef CPPHTTPLIB_OPENSSL_SUPPORT void Client::set_ca_cert_path(const std::string &ca_cert_file_path, const std::string &ca_cert_dir_path) { cli_->set_ca_cert_path(ca_cert_file_path, ca_cert_dir_path); } void Client::set_ca_cert_store(X509_STORE *ca_cert_store) { if (is_ssl_) { static_cast(*cli_).set_ca_cert_store(ca_cert_store); } else { cli_->set_ca_cert_store(ca_cert_store); } } void Client::load_ca_cert_store(const char *ca_cert, std::size_t size) { set_ca_cert_store(cli_->create_ca_cert_store(ca_cert, size)); } long Client::get_openssl_verify_result() const { if (is_ssl_) { return static_cast(*cli_).get_openssl_verify_result(); } return -1; // NOTE: -1 doesn't match any of X509_V_ERR_??? } SSL_CTX *Client::ssl_context() const { if (is_ssl_) { return static_cast(*cli_).ssl_context(); } return nullptr; } #endif } // namespace httplib