/* WebGPU backend implementation. Note: Use ClangFormat to format this file. */ #include "ggml-webgpu.h" #include "ggml-backend-impl.h" #include "ggml-impl.h" #include "ggml-wgsl-shaders.hpp" #include #include #include #include #include #include #include #include #include #include #ifdef GGML_WEBGPU_DEBUG # define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl # define WEBGPU_DEBUG_BUF_ELEMS 32 #else # define WEBGPU_LOG_DEBUG(msg) ((void) 0) #endif // GGML_WEBGPU_DEBUG #ifdef GGML_WEBGPU_CPU_PROFILE // total timing (aggregated) # define WEBGPU_CPU_PROFILE_TOTAL_START(id) auto cpu_total_start_##id = std::chrono::high_resolution_clock::now(); # define WEBGPU_CPU_PROFILE_TOTAL_END(id, ctx) \ auto cpu_total_end_##id = std::chrono::high_resolution_clock::now(); \ double cpu_total_time_##id = \ std::chrono::duration(cpu_total_end_##id - cpu_total_start_##id).count(); \ (ctx)->cpu_time_ms[#id] += cpu_total_time_##id; // fine-grained timing (not included in totals) # define WEBGPU_CPU_PROFILE_DETAIL_START(id) auto cpu_detail_start_##id = std::chrono::high_resolution_clock::now(); # define WEBGPU_CPU_PROFILE_DETAIL_END(id, ctx) \ auto cpu_detail_end_##id = std::chrono::high_resolution_clock::now(); \ double cpu_detail_time_##id = \ std::chrono::duration(cpu_detail_end_##id - cpu_detail_start_##id).count(); \ (ctx)->cpu_detail_ms[#id] += cpu_detail_time_##id; #else # define WEBGPU_CPU_PROFILE_TOTAL_START(id) # define WEBGPU_CPU_PROFILE_TOTAL_END(id, ctx) # define WEBGPU_CPU_PROFILE_DETAIL_START(id) # define WEBGPU_CPU_PROFILE_DETAIL_END(id, ctx) #endif // GGML_WEBGPU_CPU_PROFILE #ifdef GGML_WEBGPU_GPU_PROFILE # define WEBGPU_NUM_TIMESTAMP_QUERY_BUFS 24 # define WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES 16 // e.g. enough for two timestamps #endif /* Constants */ #define WEBGPU_MUL_MAT_WG_SIZE 256 #define WEBGPU_NUM_PARAM_BUFS 32u #define WEBGPU_COMMAND_SUBMIT_BATCH_SIZE 8u #define WEBGPU_WAIT_ANY_TIMEOUT_MS 0 // Maximum number of in-flight submissions per-thread, to avoid exhausting the parameter buffer pool #define WEBGPU_MAX_INFLIGHT_SUBS_PER_THREAD WEBGPU_NUM_PARAM_BUFS / WEBGPU_COMMAND_SUBMIT_BATCH_SIZE #define WEBGPU_PARAMS_BUF_SIZE_BYTES 128 // enough for 32 parameters #define WEBGPU_NUM_SET_ROWS_ERROR_BUFS 32 #define WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES 4 #define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4 // For operations which process a row in parallel, this seems like a reasonable default #define WEBGPU_ROW_SPLIT_WG_SIZE 64 // Matrix multiplication parameters // Register tiling parameters #define WEBGPU_MUL_MAT_TILE_M 8 #define WEBGPU_MUL_MAT_TILE_N 8 #define WEBGPU_MUL_MAT_WG_SIZE_M 8 #define WEBGPU_MUL_MAT_WG_SIZE_N 8 #define WEBGPU_MUL_MAT_TILE_K 32 // Subgroup matrix parameters // The number of subgroups in the M dimension #define WEBGPU_MUL_MAT_SUBGROUP_M 2 // The number of subgroups in the N dimension #define WEBGPU_MUL_MAT_SUBGROUP_N 2 // The number of subgroup matrices each subgroup accumulates over #define WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M 4 #define WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N 2 // Matrix-vector multiplication parameters #define WEBGPU_MUL_MAT_VEC_WG_SIZE 256 // Must be multiple of 4 to work with vectorized paths, and must divide mul_mat_vec wg size #define WEBGPU_MUL_MAT_VEC_OUTPUTS_PER_WG 64 #define WEBGPU_MUL_MAT_VEC_TILE_K 256 /* End Constants */ // This is a "fake" base pointer, since WebGPU buffers do not have pointers to their locations. static void * const webgpu_ptr_base = (void *) (uintptr_t) 0x1000; // NOLINT // Always returns the base offset of a tensor, regardless of views. static uint64_t webgpu_tensor_offset(const ggml_tensor * tensor) { if (tensor->view_src) { return (uint8_t *) tensor->view_src->data - (uint8_t *) webgpu_ptr_base; } return (uint8_t *) tensor->data - (uint8_t *) webgpu_ptr_base; } /* Struct definitions */ // Forward reference static void ggml_webgpu_create_buffer(wgpu::Device & device, wgpu::Buffer & buffer, size_t size, wgpu::BufferUsage usage, const char * label); struct webgpu_pool_bufs { wgpu::Buffer host_buf; wgpu::Buffer dev_buf; }; // The futures to wait on for a single queue submission struct webgpu_submission_futures { std::vector futures; }; // Holds a pool of parameter buffers for WebGPU operations struct webgpu_buf_pool { std::vector free; std::mutex mutex; std::condition_variable cv; void init(wgpu::Device device, int num_bufs, size_t buf_size, wgpu::BufferUsage dev_buf_usage, wgpu::BufferUsage host_buf_usage) { for (int i = 0; i < num_bufs; i++) { wgpu::Buffer host_buf; wgpu::Buffer dev_buf; ggml_webgpu_create_buffer(device, host_buf, buf_size, host_buf_usage, "ggml_webgpu_host_pool_buf"); ggml_webgpu_create_buffer(device, dev_buf, buf_size, dev_buf_usage, "ggml_webgpu_dev_pool_buf"); free.push_back({ host_buf, dev_buf }); } } webgpu_pool_bufs alloc_bufs() { std::unique_lock lock(mutex); cv.wait(lock, [this] { return !free.empty(); }); webgpu_pool_bufs bufs = free.back(); free.pop_back(); return bufs; } void free_bufs(std::vector bufs) { std::lock_guard lock(mutex); free.insert(free.end(), bufs.begin(), bufs.end()); cv.notify_all(); } void cleanup() { std::lock_guard lock(mutex); for (auto & bufs : free) { bufs.host_buf.Destroy(); bufs.dev_buf.Destroy(); } free.clear(); } }; #ifdef GGML_WEBGPU_GPU_PROFILE struct webgpu_gpu_profile_bufs { wgpu::Buffer host_buf; wgpu::Buffer dev_buf; wgpu::QuerySet query_set; }; // Holds a pool of parameter buffers for WebGPU operations struct webgpu_gpu_profile_buf_pool { std::vector free; std::mutex mutex; std::condition_variable cv; void init(wgpu::Device device, int num_bufs, size_t buf_size, wgpu::BufferUsage dev_buf_usage, wgpu::BufferUsage host_buf_usage) { for (int i = 0; i < num_bufs; i++) { wgpu::Buffer host_buf; wgpu::Buffer dev_buf; ggml_webgpu_create_buffer(device, host_buf, buf_size, host_buf_usage, "ggml_webgpu_host_profile_buf"); ggml_webgpu_create_buffer(device, dev_buf, buf_size, dev_buf_usage, "ggml_webgpu_dev_profile_buf"); // Create a query set for 2 timestamps wgpu::QuerySetDescriptor ts_query_set_desc = {}; ts_query_set_desc.type = wgpu::QueryType::Timestamp; ts_query_set_desc.count = 2; wgpu::QuerySet ts_query_set = device.CreateQuerySet(&ts_query_set_desc); free.push_back({ host_buf, dev_buf, ts_query_set }); } } webgpu_gpu_profile_bufs alloc_bufs() { std::unique_lock lock(mutex); cv.wait(lock, [this] { return !free.empty(); }); webgpu_gpu_profile_bufs bufs = free.back(); free.pop_back(); return bufs; } void free_bufs(std::vector bufs) { std::lock_guard lock(mutex); free.insert(free.end(), bufs.begin(), bufs.end()); cv.notify_all(); } void cleanup() { std::lock_guard lock(mutex); for (auto & bufs : free) { bufs.host_buf.Destroy(); bufs.dev_buf.Destroy(); bufs.query_set.Destroy(); } free.clear(); } }; #endif struct webgpu_pipeline { wgpu::ComputePipeline pipeline; std::string name; }; struct webgpu_command { wgpu::CommandBuffer commands; webgpu_pool_bufs params_bufs; std::optional set_rows_error_bufs; #ifdef GGML_WEBGPU_GPU_PROFILE webgpu_gpu_profile_bufs timestamp_query_bufs; std::string pipeline_name; #endif }; // All the base objects needed to run operations on a WebGPU device struct webgpu_context_struct { wgpu::Instance instance; wgpu::Adapter adapter; wgpu::Device device; wgpu::Queue queue; wgpu::Limits limits; bool supports_subgroup_matrix = false; uint32_t subgroup_size; wgpu::SubgroupMatrixConfig subgroup_matrix_config; // Separate this out from limits since on some Metal systems, the limit returned by // querying the limits is higher than the actual allowed maximum. uint32_t max_wg_size_x; std::recursive_mutex mutex; std::atomic_uint inflight_threads = 0; webgpu_buf_pool param_buf_pool; webgpu_buf_pool set_rows_error_buf_pool; webgpu_pipeline memset_pipeline; std::map>> mul_mat_pipelines; // src0_type, src1_type, vectorized std::map>> mul_mat_vec_pipelines; // src0_type, src1_type, vectorized webgpu_pipeline mul_mat_pipeline[30][2]; webgpu_pipeline set_rows_pipeline[1][2]; // dst->type, vectorized webgpu_pipeline get_rows_pipeline[30]; webgpu_pipeline get_rows_f32_no_vec_pipeline; webgpu_pipeline cpy_pipeline[2][2]; // src type, dst type webgpu_pipeline add_pipeline[2][2]; // type, inplace webgpu_pipeline sub_pipeline[2][2]; // type, inplace webgpu_pipeline mul_pipeline[2][2]; // type, inplace webgpu_pipeline div_pipeline[2][2]; // type, inplace webgpu_pipeline rms_norm_pipeline[2]; // inplace webgpu_pipeline rope_pipeline[2][2][2]; // type, ff, inplace webgpu_pipeline glu_pipeline[7][2][2]; // glu-op, type, split webgpu_pipeline scale_pipeline[2]; // inplace webgpu_pipeline soft_max_pipeline[3][2][2]; // (no_mask, f32_mask, f16_mask), has_sink, inplace size_t memset_bytes_per_thread; // Staging buffer for reading data from the GPU wgpu::Buffer get_tensor_staging_buf; #ifdef GGML_WEBGPU_DEBUG wgpu::Buffer debug_host_buf; wgpu::Buffer debug_dev_buf; #endif #ifdef GGML_WEBGPU_CPU_PROFILE // Profiling: labeled CPU time in ms (total) std::unordered_map cpu_time_ms; // Profiling: detailed CPU time in ms std::unordered_map cpu_detail_ms; #endif #ifdef GGML_WEBGPU_GPU_PROFILE // Profiling: per-shader GPU time in ms std::unordered_map shader_gpu_time_ms; // Profiling: pool of timestamp query buffers (one per operation) webgpu_gpu_profile_buf_pool timestamp_query_buf_pool; #endif }; typedef std::shared_ptr webgpu_context; struct ggml_backend_webgpu_reg_context { webgpu_context webgpu_ctx; size_t device_count; const char * name; }; struct ggml_backend_webgpu_device_context { webgpu_context webgpu_ctx; std::string device_name; std::string device_desc; }; struct ggml_backend_webgpu_context { webgpu_context webgpu_ctx; std::string name; }; struct ggml_backend_webgpu_buffer_context { webgpu_context webgpu_ctx; wgpu::Buffer buffer; std::string label; ggml_backend_webgpu_buffer_context(webgpu_context ctx, wgpu::Buffer buf, std::string lbl) : webgpu_ctx(std::move(ctx)), buffer(std::move(buf)), label(std::move(lbl)) {} }; /* End struct definitions */ /* WebGPU object initializations */ // Process a WGSL shader string, replacing tokens of the form {{KEY}} with // the corresponding values provided in `repls`. static std::string ggml_webgpu_process_shader_repls(const char * src, const std::map & repls) { if (!src) { return std::string(); } std::string s = src; for (const auto & kv : repls) { std::string token = "{{" + kv.first + "}}"; size_t pos = 0; while ((pos = s.find(token, pos)) != std::string::npos) { s.replace(pos, token.length(), kv.second); pos += kv.second.length(); } } return s; } static void ggml_webgpu_create_pipeline(wgpu::Device & device, webgpu_pipeline & pipeline, const char * shader_code, const char * label, const std::vector & constants = {}) { wgpu::ShaderSourceWGSL shader_source; shader_source.code = shader_code; wgpu::ShaderModuleDescriptor shader_desc; shader_desc.nextInChain = &shader_source; wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc); wgpu::ComputePipelineDescriptor pipeline_desc; pipeline_desc.label = label; pipeline_desc.compute.module = shader_module; pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code pipeline_desc.layout = nullptr; // nullptr means auto layout if (constants.size() > 0) { pipeline_desc.compute.constants = constants.data(); pipeline_desc.compute.constantCount = constants.size(); } pipeline = { device.CreateComputePipeline(&pipeline_desc), label }; } static webgpu_pipeline ggml_webgpu_create_pipeline2(wgpu::Device & device, const char * shader_code, const char * label, const std::vector & constants = {}) { wgpu::ShaderSourceWGSL shader_source; shader_source.code = shader_code; wgpu::ShaderModuleDescriptor shader_desc; shader_desc.nextInChain = &shader_source; wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc); wgpu::ComputePipelineDescriptor pipeline_desc; pipeline_desc.label = label; pipeline_desc.compute.module = shader_module; pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code pipeline_desc.layout = nullptr; // nullptr means auto layout if (constants.size() > 0) { pipeline_desc.compute.constants = constants.data(); pipeline_desc.compute.constantCount = constants.size(); } return { device.CreateComputePipeline(&pipeline_desc), label }; } static void ggml_webgpu_create_buffer(wgpu::Device & device, wgpu::Buffer & buffer, size_t size, wgpu::BufferUsage usage, const char * label) { wgpu::BufferDescriptor buffer_desc; buffer_desc.size = size; buffer_desc.usage = usage; buffer_desc.label = label; buffer_desc.mappedAtCreation = false; // TODO: error handling buffer = device.CreateBuffer(&buffer_desc); } /** End WebGPU object initializations */ /** WebGPU Actions */ // Wait for the queue to finish processing all submitted work static void ggml_backend_webgpu_wait(webgpu_context & ctx, std::vector & futures, bool block = true) { // If we have too many in-flight submissions, wait on the oldest one first. If there are many threads, // inflight_max may be 0, meaning that we must wait on all futures. uint64_t timeout_ms = block ? UINT64_MAX : 0; uint inflight_threads = ctx->inflight_threads; uint inflight_max = WEBGPU_MAX_INFLIGHT_SUBS_PER_THREAD / std::max(inflight_threads, 1u); while (futures.size() >= inflight_max && futures.size() > 0) { ctx->instance.WaitAny(futures[0].futures.size(), futures[0].futures.data(), UINT64_MAX); futures.erase(futures.begin()); } size_t i = 0; while (i < futures.size()) { auto waitStatus = ctx->instance.WaitAny(futures[i].futures.size(), futures[i].futures.data(), timeout_ms); switch (waitStatus) { case wgpu::WaitStatus::Success: futures.erase(futures.begin() + i); break; case wgpu::WaitStatus::TimedOut: i++; break; case wgpu::WaitStatus::Error: GGML_LOG_ERROR("ggml_webgpu: WaitAny returned an error\n"); break; default: GGML_LOG_ERROR("ggml_webgpu: WaitAny returned an unknown status\n"); break; } } } static void ggml_backend_webgpu_map_buffer(webgpu_context & ctx, wgpu::Buffer & buffer, wgpu::MapMode mode, size_t offset, size_t size) { ctx->instance.WaitAny(buffer.MapAsync(mode, offset, size, wgpu::CallbackMode::AllowSpontaneous, [](wgpu::MapAsyncStatus status, wgpu::StringView message) { if (status != wgpu::MapAsyncStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to map buffer: %s\n", message.data); } }), UINT64_MAX); } #ifdef GGML_WEBGPU_DEBUG // This function adds debugging information to shaders, as WebGPU does not support printing directly. // To use, add a bind group entry to the setup for the shader you are debugging, add the buffer and // debug statements in the shader, and then call this function after encoding the commands and submitting them. static void ggml_backend_webgpu_debug(webgpu_context & ctx) { wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder(); encoder.CopyBufferToBuffer(ctx->debug_dev_buf, 0, ctx->debug_host_buf, 0, ctx->debug_host_buf.GetSize()); wgpu::CommandBuffer commands = encoder.Finish(); ctx->queue.Submit(1, &commands); ggml_backend_webgpu_map_buffer(ctx, ctx->debug_host_buf, wgpu::MapMode::Read, 0, ctx->debug_host_buf.GetSize()); const uint32_t * debug_data = (const uint32_t *) ctx->debug_host_buf.GetConstMappedRange(); std::cout << "debug data:"; for (size_t i = 0; i < WEBGPU_DEBUG_BUF_ELEMS; i++) { std::cout << " " << i << ": " << debug_data[i]; } std::cout << "\n"; ctx->debug_host_buf.Unmap(); } #endif static webgpu_submission_futures ggml_backend_webgpu_submit(webgpu_context ctx, std::vector commands) { std::vector command_buffers; std::vector params_bufs; std::vector set_rows_error_bufs; #ifdef GGML_WEBGPU_GPU_PROFILE std::vector> pipeline_name_and_ts_bufs; #endif for (const auto & command : commands) { command_buffers.push_back(command.commands); params_bufs.push_back(command.params_bufs); if (command.set_rows_error_bufs) { set_rows_error_bufs.push_back(command.set_rows_error_bufs.value()); } } ctx->queue.Submit(command_buffers.size(), command_buffers.data()); std::vector futures; wgpu::Future p_f = ctx->queue.OnSubmittedWorkDone( wgpu::CallbackMode::AllowSpontaneous, [ctx, params_bufs](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) { if (status != wgpu::QueueWorkDoneStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n", std::string(message).c_str()); } // Free the staged buffers ctx->param_buf_pool.free_bufs({ params_bufs }); }); futures.push_back({ p_f }); for (const auto & bufs : set_rows_error_bufs) { wgpu::Future f = bufs.host_buf.MapAsync( wgpu::MapMode::Read, 0, bufs.host_buf.GetSize(), wgpu::CallbackMode::AllowSpontaneous, [ctx, bufs](wgpu::MapAsyncStatus status, wgpu::StringView message) { if (status != wgpu::MapAsyncStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to map error buffer: %s\n", std::string(message).c_str()); } else { const uint32_t * error_data = (const uint32_t *) bufs.host_buf.GetConstMappedRange(); if (*error_data) { GGML_ABORT("ggml_webgpu: SET_ROWS index > 2^32, unsupported."); } // We can't unmap in here due to WebGPU reentrancy limitations. ctx->set_rows_error_buf_pool.free_bufs({ bufs }); } }); futures.push_back({ f }); } #ifdef GGML_WEBGPU_GPU_PROFILE for (const auto & command : commands) { auto label = command.pipeline_name; auto ts_bufs = command.timestamp_query_bufs; wgpu::Future f = ts_bufs.host_buf.MapAsync( wgpu::MapMode::Read, 0, ts_bufs.host_buf.GetSize(), wgpu::CallbackMode::AllowSpontaneous, [ctx, ts_bufs, label](wgpu::MapAsyncStatus status, wgpu::StringView message) { if (status != wgpu::MapAsyncStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to map timestamp buffer: %s\n", std::string(message).c_str()); } else { const uint64_t * ts_data = (const uint64_t *) ts_bufs.host_buf.GetConstMappedRange(); // WebGPU timestamps are in ns; convert to ms double elapsed_ms = double(ts_data[1] - ts_data[0]) * 1e-6; ctx->shader_gpu_time_ms[label] += elapsed_ms; // We can't unmap in here due to WebGPU reentrancy limitations. ctx->timestamp_query_buf_pool.free_bufs({ ts_bufs }); } }); futures.push_back({ f }); } #endif return { futures }; } static webgpu_command ggml_backend_webgpu_build(webgpu_context & ctx, webgpu_pipeline & pipeline, std::vector params, std::vector bind_group_entries, uint32_t wg_x, uint32_t wg_y = 1, std::optional set_rows_error_bufs = std::nullopt) { webgpu_pool_bufs params_bufs = ctx->param_buf_pool.alloc_bufs(); ggml_backend_webgpu_map_buffer(ctx, params_bufs.host_buf, wgpu::MapMode::Write, 0, params_bufs.host_buf.GetSize()); uint32_t * _params = (uint32_t *) params_bufs.host_buf.GetMappedRange(); for (size_t i = 0; i < params.size(); i++) { _params[i] = params[i]; }; params_bufs.host_buf.Unmap(); uint32_t params_bufs_binding_num = bind_group_entries.size(); bind_group_entries.push_back({ .binding = params_bufs_binding_num, .buffer = params_bufs.dev_buf, .offset = 0, .size = params_bufs.dev_buf.GetSize() }); wgpu::BindGroupDescriptor bind_group_desc; bind_group_desc.layout = pipeline.pipeline.GetBindGroupLayout(0); bind_group_desc.entryCount = bind_group_entries.size(); bind_group_desc.entries = bind_group_entries.data(); bind_group_desc.label = pipeline.name.c_str(); wgpu::BindGroup bind_group = ctx->device.CreateBindGroup(&bind_group_desc); wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder(); encoder.CopyBufferToBuffer(params_bufs.host_buf, 0, params_bufs.dev_buf, 0, params_bufs.dev_buf.GetSize()); #ifdef GGML_WEBGPU_GPU_PROFILE // --- Profiling: GPU timestamp queries --- // Allocate a timestamp query buffer (2 timestamps: start/end) webgpu_gpu_profile_bufs ts_bufs = ctx->timestamp_query_buf_pool.alloc_bufs(); if (ts_bufs.host_buf.GetMapState() == wgpu::BufferMapState::Mapped) { ts_bufs.host_buf.Unmap(); } wgpu::PassTimestampWrites ts_writes = { .querySet = ts_bufs.query_set, .beginningOfPassWriteIndex = 0, .endOfPassWriteIndex = 1 }; wgpu::ComputePassDescriptor pass_desc = { .timestampWrites = &ts_writes }; wgpu::ComputePassEncoder pass = encoder.BeginComputePass(&pass_desc); #else wgpu::ComputePassEncoder pass = encoder.BeginComputePass(); #endif pass.SetPipeline(pipeline.pipeline); pass.SetBindGroup(0, bind_group); pass.DispatchWorkgroups(wg_x, wg_y, 1); pass.End(); #ifdef GGML_WEBGPU_GPU_PROFILE // Resolve the query set into the device buffer encoder.ResolveQuerySet(ts_bufs.query_set, 0, 2, ts_bufs.dev_buf, 0); encoder.CopyBufferToBuffer(ts_bufs.dev_buf, 0, ts_bufs.host_buf, 0, ts_bufs.host_buf.GetSize()); #endif // If there are SET_ROWS operations in this submission, copy their error buffers to the host. if (set_rows_error_bufs) { encoder.CopyBufferToBuffer(set_rows_error_bufs->dev_buf, 0, set_rows_error_bufs->host_buf, 0, set_rows_error_bufs->host_buf.GetSize()); } wgpu::CommandBuffer commands = encoder.Finish(); webgpu_command result = {}; result.commands = commands; result.params_bufs = params_bufs; result.set_rows_error_bufs = set_rows_error_bufs; #ifdef GGML_WEBGPU_GPU_PROFILE result.timestamp_query_bufs = ts_bufs; result.pipeline_name = pipeline.name; #endif return result; } static void ggml_backend_webgpu_buffer_memset(webgpu_context & ctx, wgpu::Buffer & buf, uint32_t value, size_t offset, size_t size) { std::vector params = { (uint32_t) offset, (uint32_t) size, value }; std::vector entries = { { .binding = 0, .buffer = buf, .offset = 0, .size = buf.GetSize() } }; size_t bytes_per_wg = ctx->max_wg_size_x * ctx->memset_bytes_per_thread; uint32_t wg_x = ((size + 3) + bytes_per_wg - 1) / bytes_per_wg; webgpu_command command = ggml_backend_webgpu_build(ctx, ctx->memset_pipeline, params, entries, wg_x); std::vector futures = { ggml_backend_webgpu_submit(ctx, { command }) }; ggml_backend_webgpu_wait(ctx, futures); } /** End WebGPU Actions */ /** GGML Backend Interface */ static const char * ggml_backend_webgpu_name(ggml_backend_t backend) { ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context; return ctx->name.c_str(); } static void ggml_backend_webgpu_free(ggml_backend_t backend) { ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context; WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")"); #ifdef GGML_WEBGPU_CPU_PROFILE std::cout << "\n[ggml_webgpu cpu profiling summary]\n"; double total_cpu = 0.0; for (const auto & kv : ctx->webgpu_ctx->cpu_time_ms) { total_cpu += kv.second; } std::cout << "ggml_webgpu: total cpu time: " << total_cpu << " ms\n"; std::cout << "ggml_webgpu: cpu breakdown:\n"; for (const auto & kv : ctx->webgpu_ctx->cpu_time_ms) { double pct = (total_cpu > 0.0) ? (kv.second / total_cpu * 100.0) : 0.0; std::cout << "ggml_webgpu: " << kv.first << ": " << kv.second << " ms (" << pct << "%)\n"; } if (ctx->webgpu_ctx->cpu_detail_ms.size() > 0) { std::cout << "ggml_webgpu: cpu detailed breakdown:\n"; } for (const auto & kv : ctx->webgpu_ctx->cpu_detail_ms) { double pct = (total_cpu > 0.0) ? (kv.second / total_cpu * 100.0) : 0.0; std::cout << "ggml_webgpu: " << kv.first << ": " << kv.second << " ms (" << pct << "%)\n"; } #endif #ifdef GGML_WEBGPU_GPU_PROFILE std::cout << "\n[ggml_webgpu gpu profiling summary]\n"; double total_gpu = 0.0; for (const auto & kv : ctx->webgpu_ctx->shader_gpu_time_ms) { total_gpu += kv.second; } std::cout << "ggml_webgpu: total gpu time (all shaders): " << total_gpu << " ms\n"; std::cout << "\nggml_webgpu: gpu breakdown:\n"; for (const auto & kv : ctx->webgpu_ctx->shader_gpu_time_ms) { double pct = (total_gpu > 0.0) ? (kv.second / total_gpu * 100.0) : 0.0; std::cout << "ggml_webgpu: " << kv.first << ": " << kv.second << " ms (" << pct << "%)\n"; } #endif #if defined(GGML_WEBGPU_CPU_PROFILE) && defined(GGML_WEBGPU_GPU_PROFILE) std::cout << "ggml_webgpu: gpu/cpu ratio: " << (total_cpu > 0.0 ? total_gpu / total_cpu : 0.0) << "\n"; #endif #if !defined(GGML_WEBGPU_CPU_PROFILE) && !defined(GGML_WEBGPU_GPU_PROFILE) GGML_UNUSED(ctx); #endif } static size_t ggml_webgpu_tensor_offset(const ggml_tensor * tensor) { return webgpu_tensor_offset(tensor) + tensor->view_offs; } static wgpu::Buffer ggml_webgpu_tensor_buf(const ggml_tensor * tensor) { ggml_backend_webgpu_buffer_context * ctx = (ggml_backend_webgpu_buffer_context *) tensor->buffer->context; return ctx->buffer; } static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, ggml_tensor * t) { size_t offset = ggml_webgpu_tensor_offset(t); return offset & (ctx->limits.minStorageBufferOffsetAlignment - 1); } static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, ggml_tensor * t) { size_t offset = ggml_webgpu_tensor_offset(t); return offset & ~(ctx->limits.minStorageBufferOffsetAlignment - 1); } static size_t ggml_webgpu_tensor_binding_size(webgpu_context & ctx, ggml_tensor * t) { return (ggml_nbytes(t) + ggml_webgpu_tensor_misalignment(ctx, t) + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1); } // Used to determine if two tensors are the same for in-place operations static bool ggml_webgpu_tensor_equal(ggml_tensor * a, ggml_tensor * b) { return (ggml_webgpu_tensor_buf(a).Get() == ggml_webgpu_tensor_buf(b).Get()) && (ggml_webgpu_tensor_offset(a) == ggml_webgpu_tensor_offset(b)); } static webgpu_command ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) { uint32_t ne = (uint32_t) ggml_nelements(dst); std::vector params = { ne, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), // Convert byte-strides to element-strides (uint32_t) (src->nb[0] / ggml_type_size(src->type)), (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (dst->nb[0] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), // Logical shapes (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2] }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src), .offset = ggml_webgpu_tensor_align_offset(ctx, src), .size = ggml_webgpu_tensor_binding_size(ctx, src) }, { .binding = 1, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) } }; size_t max_wg_size = ctx->max_wg_size_x; uint32_t wg_x = (ne + max_wg_size - 1) / max_wg_size; return ggml_backend_webgpu_build(ctx, ctx->cpy_pipeline[src->type][dst->type], params, entries, wg_x); } static std::optional ggml_webgpu_set_rows(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * idx, ggml_tensor * dst) { // For set rows specifically, we need to check if src and idx are empty tensors. if (ggml_is_empty(src) || ggml_is_empty(idx)) { return std::nullopt; } webgpu_pool_bufs error_bufs = ctx->set_rows_error_buf_pool.alloc_bufs(); if (error_bufs.host_buf.GetMapState() == wgpu::BufferMapState::Mapped) { error_bufs.host_buf.Unmap(); } std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, idx) / ggml_type_size(idx->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), // Convert byte-strides to element-strides (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (idx->nb[0] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[1] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[2] / ggml_type_size(idx->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), // Shape of src (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) src->ne[3], // Shape of idx (uint32_t) (idx->ne[1]), (uint32_t) (idx->ne[2]) }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src), .offset = ggml_webgpu_tensor_align_offset(ctx, src), .size = ggml_webgpu_tensor_binding_size(ctx, src) }, { .binding = 1, .buffer = ggml_webgpu_tensor_buf(idx), .offset = ggml_webgpu_tensor_align_offset(ctx, idx), .size = ggml_webgpu_tensor_binding_size(ctx, idx) }, { .binding = 2, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }, { .binding = 3, .buffer = error_bufs.dev_buf, .offset = 0, .size = error_bufs.dev_buf.GetSize() } }; size_t max_wg_size = ctx->max_wg_size_x; int vectorized = src->ne[0] % 4 == 0; webgpu_pipeline pipeline = ctx->set_rows_pipeline[0][vectorized]; uint32_t threads; if (vectorized) { threads = (src->ne[1] * src->ne[2] * src->ne[3]) * (src->ne[0] / 4); } else { threads = src->ne[0] * src->ne[1] * src->ne[2] * src->ne[3]; } uint32_t wg_x = (threads + max_wg_size - 1) / max_wg_size; return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x, 1, error_bufs); } static webgpu_command ggml_webgpu_get_rows(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * idx, ggml_tensor * dst) { std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, idx) / ggml_type_size(idx->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), // Convert byte-strides to element-strides (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (idx->nb[0] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[1] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[2] / ggml_type_size(idx->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), // Shape of dst (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], // Shape of idx (uint32_t) (idx->ne[1]), (uint32_t) (idx->ne[2]) }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src), .offset = ggml_webgpu_tensor_align_offset(ctx, src), .size = ggml_webgpu_tensor_binding_size(ctx, src) }, { .binding = 1, .buffer = ggml_webgpu_tensor_buf(idx), .offset = ggml_webgpu_tensor_align_offset(ctx, idx), .size = ggml_webgpu_tensor_binding_size(ctx, idx) }, { .binding = 2, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) } }; size_t max_wg_size = ctx->max_wg_size_x; uint32_t wg_x = (dst->ne[1] * dst->ne[2] * dst->ne[3] + max_wg_size - 1) / max_wg_size; webgpu_pipeline pipeline = ctx->get_rows_pipeline[src->type]; if (src->type == GGML_TYPE_F32 && dst->ne[0] % 4 != 0) { pipeline = ctx->get_rows_f32_no_vec_pipeline; } return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x); } static webgpu_command ggml_webgpu_mul_mat(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst) { std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), (uint32_t) dst->ne[0], // number of rows in result (M, transposed) (uint32_t) dst->ne[1], // number of columns in result (N) (uint32_t) src0->ne[0], // number of columns in src0/src1 (K) (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)), // stride (elements/blocks) of src0 in dimension 1 (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)), // stride (elements/blocks) of src1 in dimension 1 (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)), // stride (elements/blocks) of src0 in dimension 2 (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)), // stride (elements/blocks) of src1 in dimension 2 (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)), // stride (elements/blocks) of src0 in dimension 3 (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)), // stride (elements/blocks) of src1 in dimension 3 (uint32_t) src0->ne[2], // batch size in dimension 2 (uint32_t) src0->ne[3], // batch size in dimension 3 (uint32_t) (src1->ne[2] / src0->ne[2]), // broadcast in dimension 2 (uint32_t) (src1->ne[3] / src0->ne[3]) // broadcast in dimension 3 }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src0), .offset = ggml_webgpu_tensor_align_offset(ctx, src0), .size = ggml_webgpu_tensor_binding_size(ctx, src0) }, { .binding = 1, .buffer = ggml_webgpu_tensor_buf(src1), .offset = ggml_webgpu_tensor_align_offset(ctx, src1), .size = ggml_webgpu_tensor_binding_size(ctx, src1) }, { .binding = 2, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }, }; webgpu_pipeline pipeline = ctx->mul_mat_pipeline[src0->type][src1->type]; uint32_t wg_x = (dst->ne[0] * dst->ne[1] * dst->ne[2] * dst->ne[3] + WEBGPU_MUL_MAT_WG_SIZE - 1) / WEBGPU_MUL_MAT_WG_SIZE; uint32_t wg_y = 1; bool use_fast = false; switch (src1->type) { case GGML_TYPE_F16: use_fast = (src0->type == GGML_TYPE_F16); break; case GGML_TYPE_F32: switch (src0->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: use_fast = true; break; default: break; } break; default: break; } if (use_fast) { int vectorized = src0->ne[0] % 4 == 0 && dst->ne[0] % 4 == 0 && dst->ne[1] % 4 == 0; if (dst->ne[1] == 1) { // We don't support vectorized mul_mat_vec for quantized types vectorized = vectorized && (src0->type < 2); pipeline = ctx->mul_mat_vec_pipelines[src0->type][src1->type][vectorized]; uint32_t batches = dst->ne[2] * dst->ne[3]; uint32_t output_groups = (dst->ne[0] + WEBGPU_MUL_MAT_VEC_OUTPUTS_PER_WG - 1) / WEBGPU_MUL_MAT_VEC_OUTPUTS_PER_WG; uint32_t total_wg = output_groups * batches; wg_x = total_wg % ctx->limits.maxComputeWorkgroupsPerDimension; wg_y = (total_wg + ctx->limits.maxComputeWorkgroupsPerDimension - 1) / ctx->limits.maxComputeWorkgroupsPerDimension; } else { pipeline = ctx->mul_mat_pipelines[src0->type][src1->type][vectorized]; uint32_t wg_m; uint32_t wg_n; if (ctx->supports_subgroup_matrix) { // The total number of subgroups/workgroups needed per matrix. uint32_t wg_m_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->subgroup_matrix_config.M; wg_m = (dst->ne[0] + wg_m_sg_tile - 1) / wg_m_sg_tile; uint32_t wg_n_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->subgroup_matrix_config.N; wg_n = (dst->ne[1] + wg_n_sg_tile - 1) / wg_n_sg_tile; } else { uint32_t tile_m_s = WEBGPU_MUL_MAT_TILE_M * WEBGPU_MUL_MAT_WG_SIZE_M; uint32_t tile_n_s = WEBGPU_MUL_MAT_TILE_N * WEBGPU_MUL_MAT_WG_SIZE_N; wg_m = (dst->ne[0] + tile_m_s - 1) / tile_m_s; wg_n = (dst->ne[1] + tile_n_s - 1) / tile_n_s; } wg_x = wg_m * wg_n * dst->ne[2] * dst->ne[3]; } } return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x, wg_y); } static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, webgpu_pipeline & pipeline, bool inplace) { std::vector params = { (uint32_t) ggml_nelements(dst), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), (uint32_t) (src1->nb[0] / ggml_type_size(src1->type)), (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)), (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)), (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)), (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src0), .offset = ggml_webgpu_tensor_align_offset(ctx, src0), .size = ggml_webgpu_tensor_binding_size(ctx, src0) }, { .binding = 1, .buffer = ggml_webgpu_tensor_buf(src1), .offset = ggml_webgpu_tensor_align_offset(ctx, src1), .size = ggml_webgpu_tensor_binding_size(ctx, src1) } }; if (!inplace) { entries.push_back({ .binding = 2, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); } size_t max_wg_size = ctx->max_wg_size_x; uint32_t wg_x = (ggml_nelements(dst) + max_wg_size - 1) / max_wg_size; return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x); } static webgpu_command ggml_webgpu_rms_norm(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) { int inplace = ggml_webgpu_tensor_equal(src, dst); std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) src->ne[3], *(uint32_t *) dst->op_params // epsilon, treated as f32 in the shader }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src), .offset = ggml_webgpu_tensor_align_offset(ctx, src), .size = ggml_webgpu_tensor_binding_size(ctx, src) } }; if (!inplace) { entries.push_back({ .binding = 1, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); } return ggml_backend_webgpu_build(ctx, ctx->rms_norm_pipeline[inplace], params, entries, ggml_nrows(src)); } static webgpu_command ggml_webgpu_rope(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * src2, ggml_tensor * dst) { const int inplace = ggml_webgpu_tensor_equal(src0, dst); const int has_freq_factor = (src2 != nullptr); const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); int sections[4]; memcpy(sections, (int32_t *) dst->op_params + 11, 4 * sizeof(int)); float theta_scale = powf(freq_base, -2.0f / n_dims); float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)), src2 != nullptr ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src2) / ggml_type_size(src2->type)) : 0, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)), (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)), (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), (uint32_t) ggml_nelements(src0) / 2, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) n_dims, (uint32_t) mode, *(uint32_t *) &theta_scale, *(uint32_t *) &attn_factor, *(uint32_t *) &freq_scale, *(uint32_t *) &ext_factor, *(uint32_t *) &corr_dims[0], *(uint32_t *) &corr_dims[1], (uint32_t) sections[0], (uint32_t) sections[1], (uint32_t) sections[2], (uint32_t) sections[3] }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src0), .offset = ggml_webgpu_tensor_align_offset(ctx, src0), .size = ggml_webgpu_tensor_binding_size(ctx, src0) }, { .binding = 1, .buffer = ggml_webgpu_tensor_buf(src1), .offset = ggml_webgpu_tensor_align_offset(ctx, src1), .size = ggml_webgpu_tensor_binding_size(ctx, src1) } }; uint32_t dst_binding = 2; if (has_freq_factor) { dst_binding = 3; entries.push_back({ .binding = 2, .buffer = ggml_webgpu_tensor_buf(src2), .offset = ggml_webgpu_tensor_align_offset(ctx, src2), .size = ggml_webgpu_tensor_binding_size(ctx, src2) }); } if (!inplace) { entries.push_back({ .binding = dst_binding, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); } webgpu_pipeline pipeline = ctx->rope_pipeline[dst->type][has_freq_factor][inplace]; size_t max_wg_size = ctx->max_wg_size_x; uint32_t wg_x = (ggml_nelements(src0) / 2 + max_wg_size - 1) / max_wg_size; return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x); } static webgpu_command ggml_webgpu_glu(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst) { const int split = (src1 != nullptr); std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)), src1 != nullptr ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)) : 0, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)), (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)), (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)), src1 != nullptr ? (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)) : (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)), src1 != nullptr ? (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)) : (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)), src1 != nullptr ? (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)) : (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), (uint32_t) ggml_nelements(dst), (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) ((int32_t *) dst->op_params)[1], // swapped *(uint32_t *) &dst->op_params[2], // alpha, for swiglu_oai *(uint32_t *) &dst->op_params[3], // limit, for swiglu_oai }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src0), .offset = ggml_webgpu_tensor_align_offset(ctx, src0), .size = ggml_webgpu_tensor_binding_size(ctx, src0) }, }; uint32_t dst_binding = 1; if (split) { dst_binding = 2; entries.push_back({ .binding = 1, .buffer = ggml_webgpu_tensor_buf(src1), .offset = ggml_webgpu_tensor_align_offset(ctx, src1), .size = ggml_webgpu_tensor_binding_size(ctx, src1) }); } entries.push_back({ .binding = dst_binding, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); webgpu_pipeline pipeline = ctx->glu_pipeline[ggml_get_glu_op(dst)][dst->type][split]; size_t max_wg_size = ctx->max_wg_size_x; uint32_t wg_x = (ggml_nelements(dst) + max_wg_size - 1) / max_wg_size; return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x); } static webgpu_command ggml_webgpu_scale(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) { int inplace = ggml_webgpu_tensor_equal(src, dst); std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), (uint32_t) ggml_nelements(dst), (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], *(uint32_t *) dst->op_params, // scale *(uint32_t *) &dst->op_params[1] // bias }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src), .offset = ggml_webgpu_tensor_align_offset(ctx, src), .size = ggml_webgpu_tensor_binding_size(ctx, src) } }; if (!inplace) { entries.push_back({ .binding = 1, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); } size_t max_wg_size = ctx->max_wg_size_x; uint32_t wg_x = (ggml_nelements(dst) + max_wg_size - 1) / max_wg_size; return ggml_backend_webgpu_build(ctx, ctx->scale_pipeline[inplace], params, entries, wg_x); } static webgpu_command ggml_webgpu_soft_max(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * src2, ggml_tensor * dst) { const int inplace = ggml_webgpu_tensor_equal(src0, dst); const int mask_type = (src1 != nullptr) ? src1->type : 2; // use 2 for no mask here const int has_sink = (src2 != nullptr); float max_bias; memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); float n_head_log2 = float(1u << (uint32_t) floor(log2(src0->ne[2]))); float m0 = powf(2.0f, -(max_bias) / n_head_log2); float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); std::vector params = { (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)), mask_type < 2 ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)) : 0, has_sink ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src2) / ggml_type_size(src2->type)) : 0, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)), (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)), (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)), mask_type < 2 ? (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)) : 0, mask_type < 2 ? (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)) : 0, mask_type < 2 ? (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)) : 0, (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), (uint32_t) ggml_nelements(dst), (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], mask_type < 2 ? (uint32_t) src1->ne[2] : 0, mask_type < 2 ? (uint32_t) src1->ne[3] : 0, *(uint32_t *) dst->op_params, // scale *(uint32_t *) &max_bias, *(uint32_t *) &n_head_log2, *(uint32_t *) &m0, *(uint32_t *) &m1 }; std::vector entries = { { .binding = 0, .buffer = ggml_webgpu_tensor_buf(src0), .offset = ggml_webgpu_tensor_align_offset(ctx, src0), .size = ggml_webgpu_tensor_binding_size(ctx, src0) } }; uint32_t binding_num = 1; if (mask_type < 2) { entries.push_back({ .binding = binding_num, .buffer = ggml_webgpu_tensor_buf(src1), .offset = ggml_webgpu_tensor_align_offset(ctx, src1), .size = ggml_webgpu_tensor_binding_size(ctx, src1) }); binding_num++; } if (has_sink) { entries.push_back({ .binding = binding_num, .buffer = ggml_webgpu_tensor_buf(src2), .offset = ggml_webgpu_tensor_align_offset(ctx, src2), .size = ggml_webgpu_tensor_binding_size(ctx, src2) }); binding_num++; } if (!inplace) { entries.push_back({ .binding = binding_num, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); } return ggml_backend_webgpu_build(ctx, ctx->soft_max_pipeline[mask_type][has_sink][inplace], params, entries, ggml_nrows(dst)); } // Returns the encoded command, or std::nullopt if the operation is a no-op static std::optional ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) { if (ggml_is_empty(node)) { return std::nullopt; } WEBGPU_LOG_DEBUG("ggml_webgpu_encode_node(" << node << ", " << ggml_op_name(node->op) << ")"); ggml_tensor * src0 = node->src[0]; ggml_tensor * src1 = node->src[1]; ggml_tensor * src2 = node->src[2]; switch (node->op) { // no-ops case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_RESHAPE: return std::nullopt; case GGML_OP_CPY: case GGML_OP_CONT: return ggml_webgpu_cpy(ctx, src0, node); case GGML_OP_SET_ROWS: return ggml_webgpu_set_rows(ctx, src0, src1, node); case GGML_OP_GET_ROWS: return ggml_webgpu_get_rows(ctx, src0, src1, node); case GGML_OP_MUL_MAT: return ggml_webgpu_mul_mat(ctx, src0, src1, node); case GGML_OP_ADD: { int inplace = ggml_webgpu_tensor_equal(src0, node); return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipeline[node->type][inplace], inplace); } case GGML_OP_SUB: { int inplace = ggml_webgpu_tensor_equal(src0, node); return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->sub_pipeline[node->type][inplace], inplace); } case GGML_OP_MUL: { int inplace = ggml_webgpu_tensor_equal(src0, node); return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipeline[node->type][inplace], inplace); } case GGML_OP_DIV: { int inplace = ggml_webgpu_tensor_equal(src0, node); return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->div_pipeline[node->type][inplace], inplace); } case GGML_OP_RMS_NORM: return ggml_webgpu_rms_norm(ctx, src0, node); case GGML_OP_ROPE: return ggml_webgpu_rope(ctx, src0, src1, src2, node); case GGML_OP_GLU: return ggml_webgpu_glu(ctx, src0, src1, node); case GGML_OP_SCALE: return ggml_webgpu_scale(ctx, src0, node); case GGML_OP_SOFT_MAX: return ggml_webgpu_soft_max(ctx, src0, src1, src2, node); default: return std::nullopt; } } static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_graph_compute(" << cgraph->n_nodes << " nodes)"); ggml_backend_webgpu_context * backend_ctx = static_cast(backend->context); webgpu_context ctx = backend_ctx->webgpu_ctx; WEBGPU_CPU_PROFILE_TOTAL_START(graph_compute); ctx->inflight_threads++; std::vector commands; std::vector futures; for (int i = 0; i < cgraph->n_nodes; i++) { if (auto cmd = ggml_webgpu_encode_node(ctx, cgraph->nodes[i])) { commands.push_back(*cmd); } // compute the batch size based on the number of inflight threads uint inflight_threads = ctx->inflight_threads; uint batch_size = std::min(std::max(1u, WEBGPU_NUM_PARAM_BUFS / std::max(inflight_threads, 1u)), WEBGPU_COMMAND_SUBMIT_BATCH_SIZE); if (commands.size() >= batch_size) { futures.push_back(ggml_backend_webgpu_submit(ctx, commands)); // Process events and check for completed submissions ctx->instance.ProcessEvents(); ggml_backend_webgpu_wait(ctx, futures, false); commands.clear(); } } if (!commands.empty()) { webgpu_submission_futures new_futures = ggml_backend_webgpu_submit(ctx, commands); futures.push_back(new_futures); } ggml_backend_webgpu_wait(ctx, futures); ctx->inflight_threads--; WEBGPU_CPU_PROFILE_TOTAL_END(graph_compute, ctx); return GGML_STATUS_SUCCESS; } static ggml_backend_i ggml_backend_webgpu_i = { /* .get_name = */ ggml_backend_webgpu_name, /* .free = */ ggml_backend_webgpu_free, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_webgpu_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, /* .graph_optimize = */ NULL, }; /* End GGML Backend Interface */ /* GGML Backend Buffer Interface */ static void ggml_backend_webgpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_webgpu_buffer_context * ctx = static_cast(buffer->context); ctx->buffer.Destroy(); } // Returns the "fake" base pointer. static void * ggml_backend_webgpu_buffer_get_base(ggml_backend_buffer_t buffer) { GGML_UNUSED(buffer); return webgpu_ptr_base; } static void ggml_backend_webgpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { if (size == 0) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor: size is zero, nothing to do."); return; } WEBGPU_CPU_PROFILE_TOTAL_START(memset_tensor); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor(" << buf_ctx->label << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")"); size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset; // This is a trick to set all bytes of a u32 to the same 1 byte value. uint32_t val32 = (uint32_t) value * 0x01010101; ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, val32, total_offset, size); WEBGPU_CPU_PROFILE_TOTAL_END(memset_tensor, buf_ctx->webgpu_ctx); } static void ggml_backend_webgpu_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { WEBGPU_CPU_PROFILE_TOTAL_START(set_tensor); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx; WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_set_tensor(" << buf_ctx->label << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset; webgpu_ctx->queue.WriteBuffer(buf_ctx->buffer, total_offset, data, (size / 4) * 4); if (size % 4 != 0) { // If size is not a multiple of 4, we need to memset the remaining bytes size_t remaining_size = size % 4; // pack the remaining bytes into a uint32_t uint32_t val32 = 0; for (size_t i = 0; i < remaining_size; i++) { ((uint8_t *) &val32)[i] = ((const uint8_t *) data)[size - remaining_size + i]; } // memset the remaining bytes ggml_backend_webgpu_buffer_memset(webgpu_ctx, buf_ctx->buffer, val32, total_offset + (size - remaining_size), remaining_size); } else { // wait for WriteBuffer to complete webgpu_ctx->instance.WaitAny( webgpu_ctx->queue.OnSubmittedWorkDone(wgpu::CallbackMode::AllowSpontaneous, [](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) { if (status != wgpu::QueueWorkDoneStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n", std::string(message).c_str()); } }), UINT64_MAX); } WEBGPU_CPU_PROFILE_TOTAL_END(set_tensor, webgpu_ctx); } static void ggml_backend_webgpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { WEBGPU_CPU_PROFILE_TOTAL_START(get_tensor); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_get_tensor(" << buf_ctx->label << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx; wgpu::Device device = webgpu_ctx->device; size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset; size_t final_size = size; if (size % 4 != 0) { // If size is not a multiple of 4, we need to round it up to the next multiple of 4 final_size = size + (4 - (size % 4)); } std::lock_guard lock(webgpu_ctx->mutex); if (webgpu_ctx->get_tensor_staging_buf == nullptr || webgpu_ctx->get_tensor_staging_buf.GetSize() < final_size) { // Create a new staging buffer if it doesn't exist or is too small if (webgpu_ctx->get_tensor_staging_buf) { webgpu_ctx->get_tensor_staging_buf.Destroy(); } ggml_webgpu_create_buffer(device, webgpu_ctx->get_tensor_staging_buf, final_size, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "get_tensor_staging_buf"); } // Copy the data from the buffer to the staging buffer wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); encoder.CopyBufferToBuffer(buf_ctx->buffer, total_offset, webgpu_ctx->get_tensor_staging_buf, 0, final_size); wgpu::CommandBuffer commands = encoder.Finish(); // Submit the command buffer to the queue webgpu_ctx->queue.Submit(1, &commands); // Map the staging buffer to read the data ggml_backend_webgpu_map_buffer(webgpu_ctx, webgpu_ctx->get_tensor_staging_buf, wgpu::MapMode::Read, 0, final_size); // Must specify size here since the staging buffer might be larger than the tensor size const void * mapped_range = webgpu_ctx->get_tensor_staging_buf.GetConstMappedRange(0, final_size); // Copy the data from the mapped range to the output buffer std::memcpy(data, mapped_range, size); webgpu_ctx->get_tensor_staging_buf.Unmap(); WEBGPU_CPU_PROFILE_TOTAL_END(get_tensor, webgpu_ctx); } static void ggml_backend_webgpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_clear(" << buffer << ", " << (uint32_t) value << ")"); WEBGPU_CPU_PROFILE_TOTAL_START(clear); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, value, 0, buffer->size); WEBGPU_CPU_PROFILE_TOTAL_END(clear, buf_ctx->webgpu_ctx); } static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = { /* .free_buffer = */ ggml_backend_webgpu_buffer_free_buffer, /* .get_base = */ ggml_backend_webgpu_buffer_get_base, /* .init_tensor = */ NULL, // TODO: optional, needed? /* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor, /* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor, /* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor, /* .cpy_tensor = */ NULL, // TODO: optional, implement this /* .clear = */ ggml_backend_webgpu_buffer_clear, /* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor }; /* End GGML Backend Buffer Interface */ /* GGML Backend Buffer Type Interface */ static const char * ggml_backend_webgpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); return ctx->device_name.c_str(); } static ggml_backend_buffer_t ggml_backend_webgpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { static std::atomic buffer_count; int buffer_id = buffer_count++; std::string buf_name = "tensor_buf" + std::to_string(buffer_id); WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_type_alloc_buffer_" << buffer_id << ": " << size << " bytes"); ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); wgpu::Buffer buf; ggml_webgpu_create_buffer(ctx->webgpu_ctx->device, buf, (size + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1), wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst, buf_name.c_str()); ggml_backend_webgpu_buffer_context * buf_ctx = new ggml_backend_webgpu_buffer_context(ctx->webgpu_ctx, buf, buf_name); return ggml_backend_buffer_init(buft, ggml_backend_webgpu_buffer_interface, buf_ctx, size); } static size_t ggml_backend_webgpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); return ctx->webgpu_ctx->limits.minStorageBufferOffsetAlignment; } // maxBufferSize might be larger, but you can't bind more than maxStorageBufferBindingSize to a single binding. static size_t ggml_backend_webgpu_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); return ctx->webgpu_ctx->limits.maxStorageBufferBindingSize; } /* End GGML Backend Buffer Type Interface */ /* GGML Backend Device Interface */ static const char * ggml_backend_webgpu_device_get_name(ggml_backend_dev_t dev) { ggml_backend_webgpu_device_context * ctx = static_cast(dev->context); return ctx->device_name.c_str(); } static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_t dev) { ggml_backend_webgpu_device_context * ctx = static_cast(dev->context); return ctx->device_desc.c_str(); } static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { ggml_backend_webgpu_device_context * ctx = static_cast(dev->context); // TODO: what do we actually want to return here? maxBufferSize might not be the full available memory. *free = ctx->webgpu_ctx->limits.maxBufferSize; *total = ctx->webgpu_ctx->limits.maxBufferSize; } static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) { GGML_UNUSED(dev); return GGML_BACKEND_DEVICE_TYPE_GPU; } static void ggml_backend_webgpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { props->name = ggml_backend_webgpu_device_get_name(dev); props->description = ggml_backend_webgpu_device_get_description(dev); props->type = ggml_backend_webgpu_device_get_type(dev); ggml_backend_webgpu_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = { /* .async = */ false, /* .host_buffer = */ false, /* .buffer_from_host_ptr = */ false, /* .events = */ false, }; } static ggml_guid_t ggml_backend_webgpu_guid(void) { static const char * guid_str = "__ggml_webgpu :)"; return reinterpret_cast((void *) guid_str); } // Workgroup size is a common constant static std::vector ggml_webgpu_wg_size_entry(uint32_t wg_size) { std::vector constants(1); constants[0].key = "wg_size"; constants[0].value = wg_size; return constants; } static void ggml_webgpu_init_memset_pipeline(webgpu_context & webgpu_ctx) { // we use the maximum workgroup size for the memset pipeline size_t max_wg_size = webgpu_ctx->max_wg_size_x; size_t max_threads = max_wg_size * webgpu_ctx->limits.maxComputeWorkgroupsPerDimension; // Size the bytes_per_thread so that the largest buffer size can be handled webgpu_ctx->memset_bytes_per_thread = (webgpu_ctx->limits.maxStorageBufferBindingSize + max_threads - 1) / max_threads; std::vector constants(2); constants[0].key = "wg_size"; constants[0].value = max_wg_size; constants[1].key = "bytes_per_thread"; constants[1].value = webgpu_ctx->memset_bytes_per_thread; ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->memset_pipeline, wgsl_memset, "memset", constants); } static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context & webgpu_ctx) { ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q4_0][GGML_TYPE_F32], wgsl_mul_mat_q4_0_f32, "mul_mat_q4_0_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q4_1][GGML_TYPE_F32], wgsl_mul_mat_q4_1_f32, "mul_mat_q4_1_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q5_0][GGML_TYPE_F32], wgsl_mul_mat_q5_0_f32, "mul_mat_q5_0_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q5_1][GGML_TYPE_F32], wgsl_mul_mat_q5_1_f32, "mul_mat_q5_1_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q8_0][GGML_TYPE_F32], wgsl_mul_mat_q8_0_f32, "mul_mat_q8_0_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q2_K][GGML_TYPE_F32], wgsl_mul_mat_q2_k_f32, "mul_mat_q2_k_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q3_K][GGML_TYPE_F32], wgsl_mul_mat_q3_k_f32, "mul_mat_q3_k_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q4_K][GGML_TYPE_F32], wgsl_mul_mat_q4_k_f32, "mul_mat_q4_k_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q5_K][GGML_TYPE_F32], wgsl_mul_mat_q5_k_f32, "mul_mat_q5_k_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_Q6_K][GGML_TYPE_F32], wgsl_mul_mat_q6_k_f32, "mul_mat_q6_k_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ2_XXS][GGML_TYPE_F32], wgsl_mul_mat_iq2_xxs_f32, "mul_mat_iq2_xxs_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ2_XS][GGML_TYPE_F32], wgsl_mul_mat_iq2_xs_f32, "mul_mat_iq2_xs_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ2_S][GGML_TYPE_F32], wgsl_mul_mat_iq2_s_f32, "mul_mat_iq2_s_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ3_XXS][GGML_TYPE_F32], wgsl_mul_mat_iq3_xxs_f32, "mul_mat_iq3_xxs_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ3_S][GGML_TYPE_F32], wgsl_mul_mat_iq3_s_f32, "mul_mat_iq3_s_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ1_S][GGML_TYPE_F32], wgsl_mul_mat_iq1_s_f32, "mul_mat_iq1_s_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ1_M][GGML_TYPE_F32], wgsl_mul_mat_iq1_m_f32, "mul_mat_iq1_m_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ4_NL][GGML_TYPE_F32], wgsl_mul_mat_iq4_nl_f32, "mul_mat_iq4_nl_f32"); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline[GGML_TYPE_IQ4_XS][GGML_TYPE_F32], wgsl_mul_mat_iq4_xs_f32, "mul_mat_iq4_xs_f32"); if (webgpu_ctx->supports_subgroup_matrix) { std::map sg_matrix_repls; sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->subgroup_size); sg_matrix_repls["WEBGPU_TILE_K"] = std::to_string(WEBGPU_MUL_MAT_TILE_K); sg_matrix_repls["WEBGPU_SUBGROUP_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_M); sg_matrix_repls["WEBGPU_SUBGROUP_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_N); sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M); sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N); sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.M); sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.N); sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.K); std::string proc_mul_mat_subgroup_matrix_f32_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f32_f32, sg_matrix_repls); std::string proc_mul_mat_subgroup_matrix_f32_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f32_f32_vec, sg_matrix_repls); std::string proc_mul_mat_subgroup_matrix_f16_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f32, sg_matrix_repls); std::string proc_mul_mat_subgroup_matrix_f16_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f32_vec, sg_matrix_repls); std::string proc_mul_mat_subgroup_matrix_f16_f16 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f16, sg_matrix_repls); std::string proc_mul_mat_subgroup_matrix_f16_f16_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f16_vec, sg_matrix_repls); std::string proc_mul_mat_subgroup_matrix_q4_0_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_q4_0_f32, sg_matrix_repls); std::string proc_mul_mat_subgroup_matrix_q4_0_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_q4_0_f32_vec, sg_matrix_repls); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, proc_mul_mat_subgroup_matrix_f32_f32.c_str(), "mul_mat_subgroup_matrix_f32_f32"); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_subgroup_matrix_f32_f32_vec.c_str(), "mul_mat_subgroup_matrix_f32_f32_vec"); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, proc_mul_mat_subgroup_matrix_f16_f32.c_str(), "mul_mat_subgroup_matrix_f16_f32"); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_subgroup_matrix_f16_f32_vec.c_str(), "mul_mat_subgroup_matrix_f16_f32_vec"); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, proc_mul_mat_subgroup_matrix_f16_f16.c_str(), "mul_mat_subgroup_matrix_f16_f16"); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_subgroup_matrix_f16_f16_vec.c_str(), "mul_mat_subgroup_matrix_f16_f16_vec"); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, proc_mul_mat_subgroup_matrix_q4_0_f32.c_str(), "mul_mat_subgroup_matrix_q4_0_f32"); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_subgroup_matrix_q4_0_f32_vec.c_str(), "mul_mat_subgroup_matrix_q4_0_f32_vec"); } else { std::vector mul_mat_reg_tile_constants(3); mul_mat_reg_tile_constants[0].key = "TILE_K"; mul_mat_reg_tile_constants[0].value = WEBGPU_MUL_MAT_TILE_K; mul_mat_reg_tile_constants[1].key = "WORKGROUP_SIZE_M"; mul_mat_reg_tile_constants[1].value = WEBGPU_MUL_MAT_WG_SIZE_M; mul_mat_reg_tile_constants[2].key = "WORKGROUP_SIZE_N"; mul_mat_reg_tile_constants[2].value = WEBGPU_MUL_MAT_WG_SIZE_N; std::map reg_repls; reg_repls["WEBGPU_TILE_M"] = std::to_string(WEBGPU_MUL_MAT_TILE_M); reg_repls["WEBGPU_TILE_N"] = std::to_string(WEBGPU_MUL_MAT_TILE_N); // Process each reg-tile shader with tile replacements. // Keep the processed strings in-scope so .c_str() remains valid. std::string proc_mul_mat_reg_tile_f32_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f32_f32, reg_repls); std::string proc_mul_mat_reg_tile_f32_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f32_f32_vec, reg_repls); std::string proc_mul_mat_reg_tile_f16_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f32, reg_repls); std::string proc_mul_mat_reg_tile_f16_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f32_vec, reg_repls); std::string proc_mul_mat_reg_tile_f16_f16 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f16, reg_repls); std::string proc_mul_mat_reg_tile_f16_f16_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f16_vec, reg_repls); std::string proc_mul_mat_reg_tile_q4_0_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_q4_0_f32, reg_repls); std::string proc_mul_mat_reg_tile_q4_0_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_q4_0_f32_vec, reg_repls); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_f32_f32.c_str(), "mul_mat_reg_tile_f32_f32", mul_mat_reg_tile_constants); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_f32_f32_vec.c_str(), "mul_mat_reg_tile_f32_f32_vec", mul_mat_reg_tile_constants); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_f16_f32.c_str(), "mul_mat_reg_tile_f16_f32", mul_mat_reg_tile_constants); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_f16_f32_vec.c_str(), "mul_mat_reg_tile_f16_f32_vec", mul_mat_reg_tile_constants); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][0] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_f16_f16.c_str(), "mul_mat_reg_tile_f16_f16", mul_mat_reg_tile_constants); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_f16_f16_vec.c_str(), "mul_mat_reg_tile_f16_f16_vec", mul_mat_reg_tile_constants); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_q4_0_f32.c_str(), "mul_mat_reg_tile_q4_0_f32", mul_mat_reg_tile_constants); webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2(webgpu_ctx->device, proc_mul_mat_reg_tile_q4_0_f32_vec.c_str(), "mul_mat_reg_tile_q4_0_f32_vec", mul_mat_reg_tile_constants); } std::vector mul_mat_vec_constants(3); mul_mat_vec_constants[0].key = "WORKGROUP_SIZE"; mul_mat_vec_constants[0].value = WEBGPU_MUL_MAT_VEC_WG_SIZE; mul_mat_vec_constants[1].key = "TILE_K"; mul_mat_vec_constants[1].value = WEBGPU_MUL_MAT_VEC_TILE_K; mul_mat_vec_constants[2].key = "OUTPUTS_PER_WG"; mul_mat_vec_constants[2].value = WEBGPU_MUL_MAT_VEC_OUTPUTS_PER_WG; webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, wgsl_mul_mat_vec_f32_f32, "mul_mat_vec_f32_f32", mul_mat_vec_constants); webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, wgsl_mul_mat_vec_f32_f32_vec, "mul_mat_vec_f32_f32_vec", mul_mat_vec_constants); webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, wgsl_mul_mat_vec_f16_f32, "mul_mat_vec_f16_f32", mul_mat_vec_constants); webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, wgsl_mul_mat_vec_f16_f32_vec, "mul_mat_vec_f16_f32_vec", mul_mat_vec_constants); webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, wgsl_mul_mat_vec_f16_f16, "mul_mat_vec_f16_f16", mul_mat_vec_constants); webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][1] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, wgsl_mul_mat_vec_f16_f16_vec, "mul_mat_vec_f16_f16_vec", mul_mat_vec_constants); webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline2( webgpu_ctx->device, wgsl_mul_mat_vec_q4_0_f32, "mul_mat_vec_q4_0_f32", mul_mat_vec_constants); } static void ggml_webgpu_init_set_rows_pipeline(webgpu_context & webgpu_ctx) { ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->set_rows_pipeline[0][0], wgsl_set_rows_f16, "set_rows_f16", ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x)); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->set_rows_pipeline[0][1], wgsl_set_rows_f16_vec, "set_rows_f16_vec", ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x)); } static void ggml_webgpu_init_get_rows_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_F32], wgsl_get_rows_f32_vec, "get_rows_f32_vec", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_f32_no_vec_pipeline, wgsl_get_rows_f32, "get_rows_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_F16], wgsl_get_rows_f16, "get_rows_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_I32], wgsl_get_rows_i32, "get_rows_i32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q4_0], wgsl_get_rows_q4_0, "get_rows_q4_0", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q4_1], wgsl_get_rows_q4_1, "get_rows_q4_1", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q5_0], wgsl_get_rows_q5_0, "get_rows_q5_0", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q5_1], wgsl_get_rows_q5_1, "get_rows_q5_1", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q8_0], wgsl_get_rows_q8_0, "get_rows_q8_0", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q2_K], wgsl_get_rows_q2_k, "get_rows_q2_k", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q3_K], wgsl_get_rows_q3_k, "get_rows_q3_k", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q4_K], wgsl_get_rows_q4_k, "get_rows_q4_k", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q5_K], wgsl_get_rows_q5_k, "get_rows_q5_k", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_Q6_K], wgsl_get_rows_q6_k, "get_rows_q6_k", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ2_XXS], wgsl_get_rows_iq2_xxs, "get_rows_iq2_xxs", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ2_XS], wgsl_get_rows_iq2_xs, "get_rows_iq2_xs", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ2_S], wgsl_get_rows_iq2_s, "get_rows_iq2_s", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ3_XXS], wgsl_get_rows_iq3_xxs, "get_rows_iq3_xxs", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ3_S], wgsl_get_rows_iq3_s, "get_rows_iq3_s", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ1_S], wgsl_get_rows_iq1_s, "get_rows_iq1_s", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ1_M], wgsl_get_rows_iq1_m, "get_rows_iq1_m", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ4_NL], wgsl_get_rows_iq4_nl, "get_rows_iq4_nl", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->get_rows_pipeline[GGML_TYPE_IQ4_XS], wgsl_get_rows_iq4_xs, "get_rows_iq4_xs", constants); } static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F32][GGML_TYPE_F32], wgsl_cpy_f32_f32, "cpy_f32_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F32][GGML_TYPE_F16], wgsl_cpy_f32_f16, "cpy_f32_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F16][GGML_TYPE_F32], wgsl_cpy_f16_f32, "cpy_f16_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F16][GGML_TYPE_F16], wgsl_cpy_f16_f16, "cpy_f16_f16", constants); } static void ggml_webgpu_init_add_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F32][0], wgsl_add_f32, "add_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F16][0], wgsl_add_f16, "add_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F32][1], wgsl_add_f32_inplace, "add_f32_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F16][1], wgsl_add_f16_inplace, "add_f16_inplace", constants); } static void ggml_webgpu_init_sub_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F32][0], wgsl_sub_f32, "sub_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F16][0], wgsl_sub_f16, "sub_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F32][1], wgsl_sub_f32_inplace, "sub_f32_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F16][1], wgsl_sub_f16_inplace, "sub_f16_inplace", constants); } static void ggml_webgpu_init_mul_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F32][0], wgsl_mul_f32, "mul_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F16][0], wgsl_mul_f16, "mul_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F32][1], wgsl_mul_f32_inplace, "mul_f32_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F16][1], wgsl_mul_f16_inplace, "mul_f16_inplace", constants); } static void ggml_webgpu_init_div_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F32][0], wgsl_div_f32, "div_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F16][0], wgsl_div_f16, "div_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F32][1], wgsl_div_f32_inplace, "div_f32_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F16][1], wgsl_div_f16_inplace, "div_f16_inplace", constants); } static void ggml_webgpu_init_rms_norm_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rms_norm_pipeline[0], wgsl_rms_norm, "rms_norm", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rms_norm_pipeline[1], wgsl_rms_norm_inplace, "rms_norm_inplace", constants); } static void ggml_webgpu_init_rope_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][0][0], wgsl_rope_f32, "rope_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][0][1], wgsl_rope_f32_inplace, "rope_f32_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][1][0], wgsl_rope_f32_ff, "rope_f32_ff", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][1][1], wgsl_rope_f32_ff_inplace, "rope_f32_ff_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][0][0], wgsl_rope_f16, "rope_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][0][1], wgsl_rope_f16_inplace, "rope_f16_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][1][0], wgsl_rope_f16_ff, "rope_f16_ff", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][1][1], wgsl_rope_f16_ff_inplace, "rope_f16_ff_inplace", constants); } static void ggml_webgpu_init_glu_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); // reglu ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F32][0], wgsl_reglu_f32, "reglu_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F16][0], wgsl_reglu_f16, "reglu_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F32][1], wgsl_reglu_f32_split, "reglu_f32_split", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F16][1], wgsl_reglu_f16_split, "reglu_f16_split", constants); // geglu ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F32][0], wgsl_geglu_f32, "geglu_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F16][0], wgsl_geglu_f16, "geglu_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F32][1], wgsl_geglu_f32_split, "geglu_f32_split", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F16][1], wgsl_geglu_f16_split, "geglu_f16_split", constants); // swiglu ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F32][0], wgsl_swiglu_f32, "swiglu_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F16][0], wgsl_swiglu_f16, "swiglu_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F32][1], wgsl_swiglu_f32_split, "swiglu_f32_split", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F16][1], wgsl_swiglu_f16_split, "swiglu_f16_split", constants); // swiglu_oai ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU_OAI][GGML_TYPE_F32][0], wgsl_swiglu_oai_f32, "swiglu_oai_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU_OAI][GGML_TYPE_F32][1], wgsl_swiglu_oai_f32_split, "swiglu_oai_f32_split", constants); // geglu_erf ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F32][0], wgsl_geglu_erf_f32, "geglu_erf_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F16][0], wgsl_geglu_erf_f16, "geglu_erf_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F32][1], wgsl_geglu_erf_f32_split, "geglu_erf_f32_split", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F16][1], wgsl_geglu_erf_f16_split, "geglu_erf_f16_split", constants); // geglu_quick ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F32][0], wgsl_geglu_quick_f32, "geglu_quick_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F16][0], wgsl_geglu_quick_f16, "geglu_quick_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F32][1], wgsl_geglu_quick_f32_split, "geglu_quick_f32_split", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F16][1], wgsl_geglu_quick_f16_split, "geglu_quick_f16_split", constants); } static void ggml_webgpu_init_scale_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(webgpu_ctx->max_wg_size_x); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->scale_pipeline[0], wgsl_scale_f32, "scale_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->scale_pipeline[1], wgsl_scale_f32_inplace, "scale_f32_inplace", constants); } static void ggml_webgpu_init_soft_max_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[2][0][0], wgsl_soft_max_f32, "soft_max_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[2][0][1], wgsl_soft_max_f32_inplace, "soft_max_f32_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[2][1][0], wgsl_soft_max_f32_sink, "soft_max_f32_sink", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[2][1][1], wgsl_soft_max_f32_sink_inplace, "soft_max_f32_sink_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[0][0][0], wgsl_soft_max_f32_mask_f32, "soft_max_f32_mask_f32", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[0][0][1], wgsl_soft_max_f32_mask_f32_inplace, "soft_max_f32_mask_f32_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[1][0][0], wgsl_soft_max_f32_mask_f16, "soft_max_f32_mask_f16", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[1][0][1], wgsl_soft_max_f32_mask_f16_inplace, "soft_max_f32_mask_f16_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[0][1][0], wgsl_soft_max_f32_mask_f32_sink, "soft_max_f32_mask_f32_sink", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[0][1][1], wgsl_soft_max_f32_mask_f32_sink_inplace, "soft_max_f32_mask_f32_sink_inplace", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[1][1][0], wgsl_soft_max_f32_mask_f16_sink, "soft_max_f32_mask_f16_sink", constants); ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->soft_max_pipeline[1][1][1], wgsl_soft_max_f32_mask_f16_sink_inplace, "soft_max_f32_mask_f16_sink_inplace", constants); } static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) { GGML_UNUSED(params); WEBGPU_LOG_DEBUG("ggml_backend_webgpu_device_init()"); ggml_backend_webgpu_device_context * dev_ctx = static_cast(dev->context); webgpu_context webgpu_ctx = dev_ctx->webgpu_ctx; static ggml_backend_webgpu_context backend_ctx; backend_ctx.name = GGML_WEBGPU_NAME + std::string(": ") + dev_ctx->device_name; backend_ctx.webgpu_ctx = webgpu_ctx; // See GGML Backend Interface section static ggml_backend backend = { /* .guid = */ ggml_backend_webgpu_guid(), /* .interface = */ ggml_backend_webgpu_i, /* .device = */ dev, /* .context = */ &backend_ctx, }; return &backend; } static ggml_backend_buffer_type_t ggml_backend_webgpu_device_get_buffer_type(ggml_backend_dev_t dev) { // See GGML Backend Buffer Type Interface section static struct ggml_backend_buffer_type ggml_backend_webgpu_buffer_type = { /* .iface = */ { /* .get_name = */ ggml_backend_webgpu_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_webgpu_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_webgpu_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_webgpu_buffer_type_get_max_size, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .is_host = */ NULL, // defaults to false }, /* .device = */ dev, /* .context = */ NULL, }; return &ggml_backend_webgpu_buffer_type; } static bool ggml_backend_webgpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { GGML_UNUSED(dev); return buft->iface.get_name == ggml_backend_webgpu_buffer_type_get_name; } static bool ggml_webgpu_supported_qtype(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: return true; default: return false; } } static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { ggml_backend_webgpu_device_context * ctx = static_cast(dev->context); webgpu_context webgpu_ctx = ctx->webgpu_ctx; ggml_tensor * src0 = op->src[0]; ggml_tensor * src1 = op->src[1]; ggml_tensor * src2 = op->src[2]; // on smaller devices (or CI), tensors may be larger than the max storage buffer size if (ggml_nbytes(op) > webgpu_ctx->limits.maxStorageBufferBindingSize || (src0 != nullptr && ggml_nbytes(src0) > webgpu_ctx->limits.maxStorageBufferBindingSize) || (src1 != nullptr && ggml_nbytes(src1) > webgpu_ctx->limits.maxStorageBufferBindingSize)) { return false; } bool supports_op = false; switch (op->op) { case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_RESHAPE: supports_op = true; break; case GGML_OP_ADD: case GGML_OP_SUB: case GGML_OP_MUL: case GGML_OP_DIV: // TODO: support non-contiguous tensors, e.g. for MOE_EXPERT_REDUCE // see https://github.com/ggml-org/llama.cpp/pull/16857 supports_op = (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && (src0->type == op->type) && (src1->type == op->type) && ggml_is_contiguous(src0) && ggml_is_contiguous(src1); break; case GGML_OP_CPY: case GGML_OP_CONT: supports_op = (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); break; case GGML_OP_SET_ROWS: supports_op = (op->type == GGML_TYPE_F16 && src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I64); break; case GGML_OP_GET_ROWS: if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_I32 || ggml_webgpu_supported_qtype(src0->type)) { supports_op = (op->type == GGML_TYPE_F32); } break; case GGML_OP_MUL_MAT: { switch (src1->type) { case GGML_TYPE_F16: supports_op |= (src0->type == GGML_TYPE_F16); break; case GGML_TYPE_F32: switch (src0->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: supports_op = true; break; default: break; } default: break; } break; } case GGML_OP_RMS_NORM: supports_op = op->type == GGML_TYPE_F32 && src0->type == GGML_TYPE_F32; break; case GGML_OP_ROPE: supports_op = op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16; break; case GGML_OP_GLU: switch (ggml_get_glu_op(op)) { case GGML_GLU_OP_REGLU: case GGML_GLU_OP_GEGLU: case GGML_GLU_OP_SWIGLU: case GGML_GLU_OP_GEGLU_ERF: case GGML_GLU_OP_GEGLU_QUICK: supports_op = op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16; break; case GGML_GLU_OP_SWIGLU_OAI: supports_op = op->type == GGML_TYPE_F32; break; default: break; } break; case GGML_OP_SCALE: supports_op = op->type == GGML_TYPE_F32; break; case GGML_OP_SOFT_MAX: supports_op = op->type == GGML_TYPE_F32; break; default: break; } if (ggml_nbytes(op) > webgpu_ctx->limits.maxStorageBufferBindingSize || (src0 != nullptr && ggml_nbytes(src0) > webgpu_ctx->limits.maxStorageBufferBindingSize) || (src1 != nullptr && ggml_nbytes(src1) > webgpu_ctx->limits.maxStorageBufferBindingSize) || (src2 != nullptr && ggml_nbytes(src2) > webgpu_ctx->limits.maxStorageBufferBindingSize)) { supports_op = false; WEBGPU_LOG_DEBUG("ggml_webgpu op not supported due to size: "); } if (!supports_op) { WEBGPU_LOG_DEBUG("ggml_webgpu op not supported: " << ggml_op_name(op->op) << " with types dst: " << ggml_type_name(op->type) << ", src0: " << (op->src[0] ? ggml_type_name(op->src[0]->type) : "null") << ", src1: " << (op->src[1] ? ggml_type_name(op->src[1]->type) : "null")); } else { WEBGPU_LOG_DEBUG("ggml_webgpu op supported: " << ggml_op_name(op->op) << " with types dst: " << ggml_type_name(op->type) << ", src0: " << (op->src[0] ? ggml_type_name(op->src[0]->type) : "null") << ", src1: " << (op->src[1] ? ggml_type_name(op->src[1]->type) : "null")); } return supports_op; } static struct ggml_backend_device_i ggml_backend_webgpu_device_i = { /* .get_name = */ ggml_backend_webgpu_device_get_name, /* .get_description = */ ggml_backend_webgpu_device_get_description, /* .get_memory = */ ggml_backend_webgpu_device_get_memory, /* .get_type = */ ggml_backend_webgpu_device_get_type, /* .get_props = */ ggml_backend_webgpu_device_get_props, /* .init_backend = */ ggml_backend_webgpu_device_init, /* .get_buffer_type = */ ggml_backend_webgpu_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ NULL, /* .supports_op = */ ggml_backend_webgpu_device_supports_op, /* .supports_buft = */ ggml_backend_webgpu_device_supports_buft, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; /* End GGML Backend Device Interface */ /* GGML Backend Registration Interface */ static const char * ggml_backend_webgpu_reg_get_name(ggml_backend_reg_t reg) { ggml_backend_webgpu_reg_context * ctx = static_cast(reg->context); return ctx->name; } static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) { ggml_backend_webgpu_reg_context * ctx = static_cast(reg->context); return ctx->device_count; } // TODO: Does this need to be thread safe? Is it only called once? // Only one device is supported for now static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) { GGML_ASSERT(index == 0); WEBGPU_LOG_DEBUG("ggml_backend_reg_get_device()"); WEBGPU_CPU_PROFILE_TOTAL_START(reg_get_device); ggml_backend_webgpu_reg_context * reg_ctx = static_cast(reg->context); webgpu_context ctx = reg_ctx->webgpu_ctx; // TODO: track need for these toggles: https://issues.chromium.org/issues/42251215 const char * const adapterEnabledToggles[] = { "vulkan_enable_f16_on_nvidia", "use_vulkan_memory_model" }; wgpu::DawnTogglesDescriptor adapterTogglesDesc; adapterTogglesDesc.enabledToggles = adapterEnabledToggles; adapterTogglesDesc.enabledToggleCount = 2; wgpu::RequestAdapterOptions options = {}; options.nextInChain = &adapterTogglesDesc; ctx->instance.WaitAny(ctx->instance.RequestAdapter( &options, wgpu::CallbackMode::AllowSpontaneous, [&ctx](wgpu::RequestAdapterStatus status, wgpu::Adapter adapter, const char * message) { if (status != wgpu::RequestAdapterStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to get an adapter: %s\n", message); return; } ctx->adapter = std::move(adapter); }), UINT64_MAX); GGML_ASSERT(ctx->adapter != nullptr); ctx->adapter.GetLimits(&ctx->limits); ctx->max_wg_size_x = 288; // default value wgpu::AdapterInfo info{}; wgpu::AdapterPropertiesSubgroupMatrixConfigs subgroup_matrix_configs{}; if (ctx->adapter.HasFeature(wgpu::FeatureName::ChromiumExperimentalSubgroupMatrix)) { info.nextInChain = &subgroup_matrix_configs; } ctx->adapter.GetInfo(&info); wgpu::SupportedFeatures features; ctx->adapter.GetFeatures(&features); // we require f16 support GGML_ASSERT(ctx->adapter.HasFeature(wgpu::FeatureName::ShaderF16)); // Only support square f16 matrices of size 8 or 16 for now bool valid_subgroup_matrix_config = false; if (ctx->adapter.HasFeature(wgpu::FeatureName::ChromiumExperimentalSubgroupMatrix)) { for (size_t i = 0; i < subgroup_matrix_configs.configCount; i++) { const wgpu::SubgroupMatrixConfig config = subgroup_matrix_configs.configs[i]; if (config.M == config.N && config.N == config.K && (config.K == 8 || config.K == 16) && config.componentType == wgpu::SubgroupMatrixComponentType::F16 && config.resultComponentType == wgpu::SubgroupMatrixComponentType::F16) { ctx->subgroup_matrix_config = config; valid_subgroup_matrix_config = true; break; } } } // For subgroup matrix code to be the most efficient, we would like the subgroup size to be consistent and accurate. // Unfortunately, that is not possible, so we use the maximum subgroup size reported by the adapter. ctx->subgroup_size = info.subgroupMaxSize; ctx->supports_subgroup_matrix = valid_subgroup_matrix_config; // Initialize device std::vector required_features = { wgpu::FeatureName::ShaderF16, wgpu::FeatureName::ImplicitDeviceSynchronization }; if (ctx->supports_subgroup_matrix) { required_features.push_back(wgpu::FeatureName::Subgroups); required_features.push_back(wgpu::FeatureName::ChromiumExperimentalSubgroupMatrix); } #ifdef GGML_WEBGPU_GPU_PROFILE required_features.push_back(wgpu::FeatureName::TimestampQuery); #endif // Enable Dawn-specific toggles to increase native performance // TODO: Don't enable for WASM builds, they won't have an effect anyways // TODO: Maybe WebGPU needs a "fast" mode where you can request compilers skip adding checks like these, // only for native performance? const char * const deviceEnabledToggles[] = { "skip_validation", "disable_robustness", "disable_workgroup_init", "disable_polyfills_on_integer_div_and_mod" }; const char * const deviceDisabledToggles[] = { "timestamp_quantization" }; wgpu::DawnTogglesDescriptor deviceTogglesDesc; deviceTogglesDesc.enabledToggles = deviceEnabledToggles; deviceTogglesDesc.enabledToggleCount = 4; deviceTogglesDesc.disabledToggles = deviceDisabledToggles; deviceTogglesDesc.disabledToggleCount = 1; wgpu::DeviceDescriptor dev_desc; dev_desc.requiredLimits = &ctx->limits; dev_desc.requiredFeatures = required_features.data(); dev_desc.requiredFeatureCount = required_features.size(); dev_desc.SetDeviceLostCallback( wgpu::CallbackMode::AllowSpontaneous, [](const wgpu::Device & device, wgpu::DeviceLostReason reason, wgpu::StringView message) { GGML_UNUSED(device); GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast(reason), std::string(message).c_str()); }); dev_desc.SetUncapturedErrorCallback( [](const wgpu::Device & device, wgpu::ErrorType reason, wgpu::StringView message) { GGML_UNUSED(device); GGML_ABORT("ggml_webgpu: Device error! Reason: %d, Message: %s\n", static_cast(reason), std::string(message).c_str()); }); dev_desc.nextInChain = &deviceTogglesDesc; ctx->instance.WaitAny(ctx->adapter.RequestDevice( &dev_desc, wgpu::CallbackMode::AllowSpontaneous, [ctx](wgpu::RequestDeviceStatus status, wgpu::Device device, wgpu::StringView message) { if (status != wgpu::RequestDeviceStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to get a device: %s\n", std::string(message).c_str()); return; } ctx->device = std::move(device); }), UINT64_MAX); GGML_ASSERT(ctx->device != nullptr); // Initialize (compute) queue ctx->queue = ctx->device.GetQueue(); // Create buffer pool for shader parameters ctx->param_buf_pool.init(ctx->device, WEBGPU_NUM_PARAM_BUFS, WEBGPU_PARAMS_BUF_SIZE_BYTES, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Uniform, wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::MapWrite); #ifdef GGML_WEBGPU_GPU_PROFILE // Initialize buffer pool for timestamp queries (profiling) ctx->timestamp_query_buf_pool.init(ctx->device, WEBGPU_NUM_TIMESTAMP_QUERY_BUFS, WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES, wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc, wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst); #endif ctx->set_rows_error_buf_pool.init(ctx->device, WEBGPU_NUM_SET_ROWS_ERROR_BUFS, WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES, wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::Storage, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead); ggml_webgpu_init_memset_pipeline(ctx); ggml_webgpu_init_mul_mat_pipeline(ctx); ggml_webgpu_init_set_rows_pipeline(ctx); ggml_webgpu_init_get_rows_pipeline(ctx); ggml_webgpu_init_cpy_pipeline(ctx); ggml_webgpu_init_add_pipeline(ctx); ggml_webgpu_init_sub_pipeline(ctx); ggml_webgpu_init_mul_pipeline(ctx); ggml_webgpu_init_div_pipeline(ctx); ggml_webgpu_init_rms_norm_pipeline(ctx); ggml_webgpu_init_rope_pipeline(ctx); ggml_webgpu_init_glu_pipeline(ctx); ggml_webgpu_init_scale_pipeline(ctx); ggml_webgpu_init_soft_max_pipeline(ctx); #ifdef GGML_WEBGPU_DEBUG // Initialize debug buffers ggml_webgpu_create_buffer(ctx->device, ctx->debug_host_buf, WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t), wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "debug_host_buf"); ggml_webgpu_create_buffer(ctx->device, ctx->debug_dev_buf, WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t), wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc, "debug_dev_buf"); #endif static ggml_backend_webgpu_device_context device_ctx; device_ctx.webgpu_ctx = ctx; device_ctx.device_name = GGML_WEBGPU_NAME; device_ctx.device_desc = info.description; GGML_LOG_INFO( "ggml_webgpu: adapter_info: vendor_id: %u | vendor: %s | architecture: %s | device_id: %u | name: %s | " "device_desc: %s\n", info.vendorID, std::string(info.vendor).c_str(), std::string(info.architecture).c_str(), info.deviceID, std::string(info.device).c_str(), std::string(info.description).c_str()); // See GGML Backend Device Interface section static ggml_backend_device device = { /* .iface = */ ggml_backend_webgpu_device_i, /* .reg = */ reg, /* .context = */ &device_ctx, }; WEBGPU_CPU_PROFILE_TOTAL_END(reg_get_device, ctx); return &device; } static const struct ggml_backend_reg_i ggml_backend_webgpu_reg_i = { /* .get_name = */ ggml_backend_webgpu_reg_get_name, /* .get_device_count = */ ggml_backend_webgpu_reg_get_device_count, /* .get_device = */ ggml_backend_webgpu_reg_get_device, /* .get_proc_address = */ NULL, }; /* End GGML Backend Registration Interface */ ggml_backend_reg_t ggml_backend_webgpu_reg() { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_reg()"); webgpu_context webgpu_ctx = std::make_shared(); static ggml_backend_webgpu_reg_context ctx; ctx.webgpu_ctx = webgpu_ctx; ctx.name = GGML_WEBGPU_NAME; ctx.device_count = 1; const char * const instanceEnabledToggles[] = { "allow_unsafe_apis" }; wgpu::DawnTogglesDescriptor instanceTogglesDesc; instanceTogglesDesc.enabledToggles = instanceEnabledToggles; instanceTogglesDesc.enabledToggleCount = 1; wgpu::InstanceDescriptor instance_descriptor{}; std::vector instance_features = { wgpu::InstanceFeatureName::TimedWaitAny }; instance_descriptor.requiredFeatures = instance_features.data(); instance_descriptor.requiredFeatureCount = instance_features.size(); instance_descriptor.nextInChain = &instanceTogglesDesc; webgpu_ctx->instance = wgpu::CreateInstance(&instance_descriptor); GGML_ASSERT(webgpu_ctx->instance != nullptr); static ggml_backend_reg reg = { /* .api_version = */ GGML_BACKEND_API_VERSION, /* .iface = */ ggml_backend_webgpu_reg_i, /* .context = */ &ctx, }; return ® } ggml_backend_t ggml_backend_webgpu_init(void) { ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_webgpu_reg(), 0); return ggml_backend_webgpu_device_init(dev, nullptr); } GGML_BACKEND_DL_IMPL(ggml_backend_webgpu_reg)