#include "llama.h" #include "common.h" #include #include #include #include #include #include static void print_usage(int, char ** argv) { printf("\nexample usage:\n"); printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [-pooling] [-embd-norm ] [prompt]\n", argv[0]); printf("\n"); printf(" -embd-norm: normalization type for pooled embeddings (default: 2)\n"); printf(" -1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm\n"); printf("\n"); } int main(int argc, char ** argv) { std::string model_path; std::string prompt = "Hello, my name is"; int ngl = 0; bool embedding_mode = false; bool pooling_enabled = false; int32_t embd_norm = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm) { int i = 1; for (; i < argc; i++) { if (strcmp(argv[i], "-m") == 0) { if (i + 1 < argc) { model_path = argv[++i]; } else { print_usage(argc, argv); return 1; } } else if (strcmp(argv[i], "-ngl") == 0) { if (i + 1 < argc) { try { ngl = std::stoi(argv[++i]); } catch (...) { print_usage(argc, argv); return 1; } } else { print_usage(argc, argv); return 1; } } else if (strcmp(argv[i], "-embd-mode") == 0) { embedding_mode = true; } else if (strcmp(argv[i], "-pooling") == 0) { pooling_enabled = true; } else if (strcmp(argv[i], "-embd-norm") == 0) { if (i + 1 < argc) { try { embd_norm = std::stoi(argv[++i]); } catch (...) { print_usage(argc, argv); return 1; } } else { print_usage(argc, argv); return 1; } } else { // prompt starts here break; } } if (model_path.empty()) { print_usage(argc, argv); return 1; } if (i < argc) { prompt = argv[i++]; for (; i < argc; i++) { prompt += " "; prompt += argv[i]; } } } ggml_backend_load_all(); llama_model_params model_params = llama_model_default_params(); model_params.n_gpu_layers = ngl; llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // Extract basename from model_path const char * basename = strrchr(model_path.c_str(), '/'); basename = (basename == NULL) ? model_path.c_str() : basename + 1; char model_name[256]; strncpy(model_name, basename, 255); model_name[255] = '\0'; char * dot = strrchr(model_name, '.'); if (dot != NULL && strcmp(dot, ".gguf") == 0) { *dot = '\0'; } printf("Model name: %s\n", model_name); const llama_vocab * vocab = llama_model_get_vocab(model); const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true); std::vector prompt_tokens(n_prompt); if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); return 1; } llama_context_params ctx_params = llama_context_default_params(); ctx_params.n_ctx = n_prompt; ctx_params.n_batch = n_prompt; ctx_params.no_perf = false; if (embedding_mode) { ctx_params.embeddings = true; ctx_params.pooling_type = pooling_enabled ? LLAMA_POOLING_TYPE_MEAN : LLAMA_POOLING_TYPE_NONE; ctx_params.n_ubatch = ctx_params.n_batch; } llama_context * ctx = llama_init_from_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } printf("Input prompt: \"%s\"\n", prompt.c_str()); printf("Tokenized prompt (%d tokens): ", n_prompt); for (auto id : prompt_tokens) { char buf[128]; int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true); if (n < 0) { fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); return 1; } std::string s(buf, n); printf("%s", s.c_str()); } printf("\n"); llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval\n", __func__); return 1; } float * data_ptr; int data_size; const char * type; std::vector embd_out; if (embedding_mode) { const int n_embd = llama_model_n_embd(model); const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens; const int n_embeddings = n_embd * n_embd_count; float * embeddings; type = "-embeddings"; if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) { embeddings = llama_get_embeddings_seq(ctx, 0); embd_out.resize(n_embeddings); printf("Normalizing embeddings using norm: %d\n", embd_norm); common_embd_normalize(embeddings, embd_out.data(), n_embeddings, embd_norm); embeddings = embd_out.data(); } else { embeddings = llama_get_embeddings(ctx); } printf("Embedding dimension: %d\n", n_embd); printf("\n"); // Print embeddings in the specified format for (int j = 0; j < n_embd_count; j++) { printf("embedding %d: ", j); // Print first 3 values for (int i = 0; i < 3 && i < n_embd; i++) { printf("%9.6f ", embeddings[j * n_embd + i]); } printf(" ... "); // Print last 3 values for (int i = n_embd - 3; i < n_embd; i++) { if (i >= 0) { printf("%9.6f ", embeddings[j * n_embd + i]); } } printf("\n"); } printf("\n"); printf("Embeddings size: %d\n", n_embeddings); data_ptr = embeddings; data_size = n_embeddings; } else { float * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1); const int n_logits = llama_vocab_n_tokens(vocab); type = ""; printf("Vocab size: %d\n", n_logits); data_ptr = logits; data_size = n_logits; } std::filesystem::create_directory("data"); // Save data to binary file char bin_filename[512]; snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type); printf("Saving data to %s\n", bin_filename); FILE * f = fopen(bin_filename, "wb"); if (f == NULL) { fprintf(stderr, "%s: error: failed to open binary output file\n", __func__); return 1; } fwrite(data_ptr, sizeof(float), data_size, f); fclose(f); // Also save as text for debugging char txt_filename[512]; snprintf(txt_filename, sizeof(txt_filename), "data/llamacpp-%s%s.txt", model_name, type); f = fopen(txt_filename, "w"); if (f == NULL) { fprintf(stderr, "%s: error: failed to open text output file\n", __func__); return 1; } for (int i = 0; i < data_size; i++) { fprintf(f, "%d: %.6f\n", i, data_ptr[i]); } fclose(f); if (!embedding_mode) { printf("First 10 logits: "); for (int i = 0; i < 10 && i < data_size; i++) { printf("%.6f ", data_ptr[i]); } printf("\n"); printf("Last 10 logits: "); for (int i = data_size - 10; i < data_size; i++) { if (i >= 0) printf("%.6f ", data_ptr[i]); } printf("\n\n"); } printf("Data saved to %s\n", bin_filename); printf("Data saved to %s\n", txt_filename); llama_free(ctx); llama_model_free(model); return 0; }