/* * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "aclnn_ops.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ggml-impl.h" #include "ggml.h" #define GGML_COMMON_DECL_C #include "../ggml-common.h" void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst) { GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_can_repeat(src1, src0)); // Need bcast if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) { BCAST_SHAPE(src0, src1) *acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0)); *acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1)); *acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0)); } else { *acl_src0 = ggml_cann_create_tensor(src0); *acl_src1 = ggml_cann_create_tensor(src1); *acl_dst = ggml_cann_create_tensor(dst); } } void ggml_cann_op_unary( std::function unary_op, ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); unary_op(ctx, acl_src, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst); } void ggml_cann_op_unary_gated( std::function unary_op, ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; GGML_ASSERT(ggml_is_contiguous_1(src0)); GGML_ASSERT(ggml_is_contiguous_1(dst)); const int32_t swapped = ggml_get_op_params_i32(dst, 1); aclTensor* acl_dst = ggml_cann_create_tensor(dst); aclTensor *acl_src0 = nullptr, *acl_src1 = nullptr; if(src1) { GGML_ASSERT(ggml_is_contiguous_1(src1)); GGML_ASSERT(src0->type == src1->type); acl_src0 = ggml_cann_create_tensor(src0); acl_src1 = ggml_cann_create_tensor(src1); } else { int64_t ne[] = {src0->ne[0] / 2, src0->ne[1], src0->ne[2], src0->ne[3]}; size_t nb[] = {src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]}; acl_src0 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, 0); acl_src1 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, ne[0] * ggml_element_size(src0)); if (swapped) { std::swap(acl_src0, acl_src1); } } unary_op(ctx, acl_src0, acl_dst); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, acl_dst, acl_src1); ggml_cann_release_resources(ctx, acl_src0, acl_dst); if(src1) ggml_cann_release_resources(ctx, acl_src1); } /** * @brief Repeats elements of a tensor along each dimension according to the * specified repeat array. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor to be repeated. * @param acl_dst The destination tensor after repeating. * @param repeat_array The array specifying the number of repetitions along each * dimension. */ static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* repeat_array) { // repeat tensor along each dim with repeat_array aclIntArray* repeats = aclCreateIntArray(repeat_array, GGML_MAX_DIMS); GGML_CANN_CALL_ACLNN_OP(ctx, Repeat, acl_src, repeats, acl_dst); ggml_cann_release_resources(ctx, repeats); } /** * @brief Casts the data type of a source tensor to a destination tensor. * * This function casts the data type of the source tensor `acl_src` to the * specified data type `cast_data_type` and stores the result in the destination * tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose data type will be casted. * @param acl_dst The destination tensor where the casted result will be stored. * @param cast_data_type The target data type to which the source tensor will be * casted. */ static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, aclDataType cast_data_type) { GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src, cast_data_type, acl_dst); } void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(ggml_can_repeat(src, dst)); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int64_t repeatsArray[] = {dst->ne[3] / src->ne[3], dst->ne[2] / src->ne[2], dst->ne[1] / src->ne[1], dst->ne[0] / src->ne[0]}; aclnn_repeat(ctx, acl_src, acl_dst, repeatsArray); ggml_cann_release_resources(ctx, acl_src, acl_dst); } void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0, aclTensor* acl_src1, aclTensor* acl_dst) { float alphaValue = 1.0f; aclScalar* alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); if (acl_dst != nullptr) GGML_CANN_CALL_ACLNN_OP(ctx, Add, acl_src0, acl_src1, alpha, acl_dst); else GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdd, acl_src0, acl_src1, alpha); ggml_cann_release_resources(ctx, alpha); } void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0, aclTensor* acl_src1, aclTensor* acl_dst) { float alphaValue = 1.0f; aclScalar* alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); if (acl_dst != nullptr) GGML_CANN_CALL_ACLNN_OP(ctx, Sub, acl_src0, acl_src1, alpha, acl_dst); else GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSub, acl_src0, acl_src1, alpha); ggml_cann_release_resources(ctx, alpha); } void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_other, aclTensor* acl_dst) { if (acl_dst != nullptr) GGML_CANN_CALL_ACLNN_OP(ctx, Mul, acl_src, acl_other, acl_dst); else GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, acl_src, acl_other); } void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_other, aclTensor* acl_dst) { if (acl_dst != nullptr) GGML_CANN_CALL_ACLNN_OP(ctx, Div, acl_src, acl_other, acl_dst); else GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDiv, acl_src, acl_other); } /** * @brief Multiplies elements of a tensor by a scalar value, optionally * in-place. * * This function multiplies each element of the source tensor `acl_src` by the * scalar `scale` and stores the result in the destination tensor `acl_dst`. If * `inplace` is true, `acl_dst` will not be used and the operation is performed * in-place on `acl_src`. * The operation is defined as: * \f[ * \text {acl_dst }_i=\text {acl_src }_i \times \text {scale} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose elements will be multiplied. * @param scale The scalar value by which each element of `acl_src` will be * multiplied. * @param acl_dst The destination tensor where the result will be stored if * `inplace` is false. * @param inplace Flag indicating whether to perform the operation in-place on * `acl_src`. */ static void aclnn_muls(ggml_backend_cann_context& ctx, aclTensor* acl_src, float scale, aclTensor* acl_dst, bool inplace) { aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT); if (inplace) { GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_src, acl_scale); } else { GGML_CANN_CALL_ACLNN_OP(ctx, Muls, acl_src, acl_scale, acl_dst); } ggml_cann_release_resources(ctx, acl_scale); } void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); aclScalar* acl_negative_slope = aclCreateScalar(&negative_slope, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, LeakyRelu, acl_src, acl_negative_slope, acl_dst); ggml_cann_release_resources(ctx, acl_negative_slope, acl_src, acl_dst); } /** * @brief Concatenates a list of tensors along a specified dimension and stores * the result in a destination tensor. * * @param ctx The context for the CANN backend operations. * @param tensorList The list of tensors to be concatenated. * @param acl_dst The destination tensor where the concatenated result will be * stored. * @param concat_dim The dimension along which the tensors will be concatenated. */ static void aclnn_concat(ggml_backend_cann_context& ctx, aclTensorList* tensorList, aclTensor* acl_dst, int64_t concat_dim) { GGML_CANN_CALL_ACLNN_OP(ctx, Cat, tensorList, concat_dim, acl_dst); } void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; aclTensor* acl_src0 = ggml_cann_create_tensor(src0); aclTensor* acl_src1 = ggml_cann_create_tensor(src1); aclTensor* acl_dst = ggml_cann_create_tensor(dst); const int32_t dim = ggml_get_op_params_i32(dst, 0); GGML_ASSERT(dim >= 0 && dim < 4); int32_t acl_dim = 3 - dim; aclTensor* tensors[] = {acl_src0, acl_src1}; aclTensorList* tensor_list = aclCreateTensorList(tensors, 2); aclnn_concat(ctx, tensor_list, acl_dst, acl_dim); ggml_cann_release_resources(ctx, tensor_list, acl_dst); } /** * @brief Creates a tensor with values starting from `start`, incremented by * `step`, and ending before `stop`. * * This function performs the operation: * \f[ * \text {out }_{i+1}=\text {out }_i+\text {step} * \f] * the range is [start, stop). * * @param ctx The context for the CANN backend operations. * @param acl_dst The destination tensor where the values will be stored. * @param start The starting value of the range. * @param stop The ending value of the range (exclusive). * @param step The step size between consecutive values. * @param n_elements The number of elements in the destination tensor. */ static void aclnn_arange(ggml_backend_cann_context& ctx, aclTensor* acl_dst, float start, float stop, float step, int64_t n_elements) { int64_t steps = (int64_t)std::ceil((stop - start) / step); GGML_ASSERT(n_elements == steps); aclScalar* acl_start = aclCreateScalar(&start, aclDataType::ACL_FLOAT); aclScalar* acl_end = aclCreateScalar(&stop, aclDataType::ACL_FLOAT); aclScalar* acl_step = aclCreateScalar(&step, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, Arange, acl_start, acl_end, acl_step, acl_dst); ggml_cann_release_resources(ctx, acl_start, acl_end, acl_step); } void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst) { GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int64_t n_elements = ggml_nelements(dst); float start; float stop; float step; memcpy(&start, (float*)dst->op_params + 0, sizeof(float)); memcpy(&stop, (float*)dst->op_params + 1, sizeof(float)); memcpy(&step, (float*)dst->op_params + 2, sizeof(float)); aclnn_arange(ctx, acl_dst, start, stop, step, n_elements); ggml_cann_release_resources(ctx, acl_dst); } void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; float min; float max; memcpy(&min, dst->op_params, sizeof(float)); memcpy(&max, (float*)dst->op_params + 1, sizeof(float)); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); aclScalar* acl_min = aclCreateScalar(&min, aclDataType::ACL_FLOAT); aclScalar* acl_max = aclCreateScalar(&max, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, Clamp, acl_src, acl_min, acl_max, acl_dst); ggml_cann_release_resources(ctx, acl_min, acl_max, acl_src, acl_dst); } void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; // scale factor float v; memcpy(&v, dst->op_params, sizeof(float)); aclScalar* scale = aclCreateScalar(&v, aclDataType::ACL_FLOAT); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); GGML_CANN_CALL_ACLNN_OP(ctx, Muls, acl_src, scale, acl_dst); ggml_cann_release_resources(ctx, scale, acl_src, acl_dst); } void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; enum ggml_sort_order order = (enum ggml_sort_order)dst->op_params[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); ggml_cann_pool_alloc temp_buffer_allocator( ctx.pool(), ggml_nelements(dst) * sizeof(int64_t)); void* buffer = temp_buffer_allocator.get(); aclTensor* tmp_tensor = ggml_cann_create_tensor(buffer, ACL_INT64, ggml_type_size(dst->type), dst->ne, dst->nb, GGML_MAX_DIMS); GGML_CANN_CALL_ACLNN_OP(ctx, Argsort, acl_src, -1, (order == GGML_SORT_ORDER_DESC ? true : false), tmp_tensor); GGML_CANN_CALL_ACLNN_OP(ctx, Cast, tmp_tensor, ggml_cann_type_mapping(dst->type), acl_dst); ggml_cann_release_resources(ctx, acl_src, tmp_tensor, acl_dst); } void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float eps; memcpy(&eps, dst->op_params, sizeof(float)); std::vector normData = {dst->ne[0]}; aclIntArray* norm = aclCreateIntArray(normData.data(), normData.size()); GGML_CANN_CALL_ACLNN_OP(ctx, LayerNorm, acl_src, norm, nullptr, nullptr, eps, acl_dst, nullptr, nullptr); ggml_cann_release_resources(ctx, norm, acl_src, acl_dst); } void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int n_groups = dst->op_params[0]; float eps; memcpy(&eps, dst->op_params + 1, sizeof(float)); int64_t N = src->ne[3]; int64_t C = src->ne[2]; int64_t HxW = src->ne[1] * src->ne[0]; size_t type_size = ggml_type_size(src->type); int64_t ne[] = {n_groups, N}; size_t nb[] = {type_size, type_size * n_groups}; size_t n_bytes = N * n_groups; ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes * 2); void* buffer = temp_buffer_allocator.get(); aclTensor* acl_mean_out = ggml_cann_create_tensor( buffer, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND); aclTensor* acl_rstd_out = ggml_cann_create_tensor( (char*)buffer + n_bytes, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND); GGML_CANN_CALL_ACLNN_OP(ctx, GroupNorm, acl_src, nullptr, nullptr, N, C, HxW, n_groups, eps, acl_dst, acl_mean_out, acl_rstd_out); ggml_cann_release_resources(ctx, acl_src, acl_dst, acl_mean_out, acl_rstd_out); } void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; size_t nb1 = ((int32_t*)dst->op_params)[0]; size_t nb2 = ((int32_t*)dst->op_params)[1]; size_t nb3 = ((int32_t*)dst->op_params)[2]; size_t offset = ((int32_t*)dst->op_params)[3]; bool inplace = (bool)((int32_t*)dst->op_params)[4]; size_t param_nb[] = {ggml_element_size(src0), nb1, nb2, nb3}; aclTensor* acl_dst = ggml_cann_create_tensor( dst, src1->ne, param_nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset); aclTensor* acl_src1 = ggml_cann_create_tensor(src1); aclScalar* alpha = nullptr; float alphaValue = 1.0f; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); if (!inplace) { size_t cpy_size = ggml_nbytes(dst); ggml_cann_async_memcpy(ctx, dst->data, src0->data, cpy_size, ACL_MEMCPY_DEVICE_TO_DEVICE); aclTensor* acl_src0 = ggml_cann_create_tensor( src0, src1->ne, src0->nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset); GGML_CANN_CALL_ACLNN_OP(ctx, Add, acl_src0, acl_src1, alpha, acl_dst); ggml_cann_release_resources(ctx, acl_src0); } else { GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdd, acl_dst, acl_src1, alpha); } ggml_cann_release_resources(ctx, acl_src1, acl_dst); } /** * @brief Performs sum reduction on a given tensor along specified dimensions. * * This function reduces the input tensor by summing along the specified dimensions. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the reduced result will be stored. * @param dim An array of dimension indices. * @param dim_size The number of dimensions. */ static void aclnn_reduce_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst, int64_t* dim, size_t dim_size) { GGML_ASSERT(dst->ne[0] == 1); ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); aclIntArray* reduce_dims = aclCreateIntArray(dim, dim_size); GGML_CANN_CALL_ACLNN_OP(ctx, ReduceSum, acl_src, reduce_dims, true, ggml_cann_type_mapping(dst->type), acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst, reduce_dims); } void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { int64_t reduce_dims[] = {3}; aclnn_reduce_sum(ctx, dst, reduce_dims, 1); } void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst) { int64_t reduce_dims[] = {0, 1, 2, 3}; aclnn_reduce_sum(ctx, dst, reduce_dims, 4); } void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); aclTensor* acl_dst = ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); std::vector output_size{dst->ne[1], dst->ne[0]}; auto output_size_array = aclCreateIntArray(output_size.data(), 2); GGML_CANN_CALL_ACLNN_OP(ctx, UpsampleNearest2d, acl_src, output_size_array, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst, output_size_array); } /** * @brief Pads a tensor with a specified value along each dimension. * * This function performs padding of the source tensor `acl_src` and stores the * result in the destination tensor `acl_dst`. The padding values for each * dimension are specified in the `paddings` array. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor to be padded. * @param acl_dst The destination tensor where the padded result will be stored. * @param paddings An array specifying the padding values for each dimension. * The size of the array should be twice the number of dimensions of the tensor. * @param value The value to be used for padding. The default value is 0.0. */ static void aclnn_pad(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* paddings, float value = 0.0f) { aclIntArray* acl_pad = aclCreateIntArray(paddings, GGML_MAX_DIMS * 2); aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, ConstantPadNd, acl_src, acl_pad, acl_value, acl_dst); ggml_cann_release_resources(ctx, acl_pad, acl_value); } void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); // padding: value in the array means how much distance will be padding. // the position of elements in the array means which dirction to padding, // each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind, // dim2.front, dim2.behind, dim3.front, dim3.behind] int64_t paddings[] = { 0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1], 0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]}; aclnn_pad(ctx, acl_src, acl_dst, paddings); ggml_cann_release_resources(ctx, acl_src, acl_dst); } /** * @brief Performs 2D average pooling on the input tensor and stores the result * in the destination tensor. * * This function performs average pooling on the source tensor and stores the * result in the destination tensor. The pooling parameters (kernel size, * strides, padding) are specified in the `op_params` of the destination tensor. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result will be stored. The source * tensor is referenced by `dst->src[0]`. */ static void ggml_cann_avg_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_src = ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); aclTensor* acl_dst = ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); const int32_t* opts = (const int32_t*)dst->op_params; const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; const int s1 = opts[4]; const int p0 = opts[5]; const int p1 = opts[6]; std::vector kernel_dims = {k1, k0}; std::vector stride_dims = {s1, s0}; std::vector padding_avg_dims = {p1, p0}; // (padH, padW) auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); auto* strides = aclCreateIntArray(stride_dims.data(), 2); auto* paddings_avg = aclCreateIntArray(padding_avg_dims.data(), 2); bool ceil_mode = false; bool count_include_pad = true; int64_t divisor_override = 0; int8_t cube_math_type = 0; #ifdef ASCEND_310P cube_math_type = 1; #endif GGML_CANN_CALL_ACLNN_OP(ctx, AvgPool2d, acl_src, kernel_size, strides, paddings_avg, ceil_mode, count_include_pad, divisor_override, cube_math_type, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst, kernel_size, strides, paddings_avg); } /** * @brief Performs 2D max pooling on the input tensor and stores the result in * the destination tensor. * * This function performs max pooling on the source tensor and stores the result * in the destination tensor. The pooling parameters (kernel size, strides, * padding) are specified in the `op_params` of the destination tensor. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result will be stored. The source * tensor is referenced by `dst->src[0]`. */ static void ggml_cann_max_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_src = ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); aclTensor* acl_dst = ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); const int32_t* opts = (const int32_t*)dst->op_params; const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; const int s1 = opts[4]; const int p0 = opts[5]; const int p1 = opts[6]; int64_t temp_ne[] = {src->ne[0] + p0 * 2, src->ne[1] + p1 * 2, src->ne[2], src->ne[3]}; size_t temp_nb[GGML_MAX_DIMS]; temp_nb[0] = ggml_element_size(src); for (int i = 1; i < GGML_MAX_DIMS; i++) { temp_nb[i] = temp_nb[i - 1] * temp_ne[i - 1]; } ggml_cann_pool_alloc temp_buffer_allocator( ctx.pool(), ggml_nbytes(src) + p0 * 2 + p1 * 2 * src->nb[1]); void* buffer = temp_buffer_allocator.get(); aclTensor* tmp_tensor = ggml_cann_create_tensor( buffer, ACL_FLOAT, ggml_element_size(src), temp_ne, temp_nb, GGML_MAX_DIMS, ACL_FORMAT_NCHW); // pad: see padding in ggml_cann_pad() int64_t paddings[] = {p0, p0, p1, p1, 0, 0, 0, 0}; float value = -FLT_MAX; aclnn_pad(ctx, acl_src, tmp_tensor, paddings, value); // max_pool std::vector kernel_dims = {k1, k0}; std::vector stride_dims = {s1, s0}; // padding_max_dims: [dim0_start, dim0_end, dim1_start, dim1_end] std::vector padding_max_dims = {0, 0, 0, 0}; std::vector dilation_size = {1, 1}; auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); auto* strides = aclCreateIntArray(stride_dims.data(), 2); auto* paddings_max = aclCreateIntArray(padding_max_dims.data(), 4); auto* dilations = aclCreateIntArray(dilation_size.data(), 2); bool ceil_mode = false; int64_t auto_pads = 0; GGML_CANN_CALL_ACLNN_OP(ctx, MaxPool, tmp_tensor, kernel_size, strides, auto_pads, paddings_max, dilations, ceil_mode, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst, tmp_tensor, kernel_size, strides, paddings_max, dilations); } void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const int32_t* opts = (const int32_t*)dst->op_params; enum ggml_op_pool op = static_cast(opts[0]); switch (op) { case GGML_OP_POOL_AVG: ggml_cann_avg_pool2d(ctx, dst); break; case GGML_OP_POOL_MAX: ggml_cann_max_pool2d(ctx, dst); break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); break; } } /** * @brief Copies data from the source tensor to the destination tensor. * * This function copies data from the source tensor `acl_src` to the destination * tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor from which data will be copied. * @param acl_dst The destination tensor where the data will be copied to. */ static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { GGML_CANN_CALL_ACLNN_OP(ctx, InplaceCopy, acl_dst, acl_src); } void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; if (ggml_are_same_shape(src0, dst)) { aclTensor* acl_src = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); if (dst->type == src0->type) { cann_copy(ctx, acl_src, acl_dst); } else { aclnn_cast(ctx, acl_src, acl_dst, ggml_cann_type_mapping(dst->type)); } ggml_cann_release_resources(ctx, acl_src, acl_dst); } else { void* src_trans_buffer = src0->data; ggml_cann_pool_alloc src_buffer_allocator; if (!ggml_is_contiguous(src0)) { aclTensor* acl_src = ggml_cann_create_tensor(src0); src_buffer_allocator.alloc(ctx.pool(), ggml_nelements(src0) * ggml_type_size(src0->type)); src_trans_buffer = src_buffer_allocator.get(); size_t src_trans_nb[GGML_MAX_DIMS]; src_trans_nb[0] = ggml_type_size(src0->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1]; } aclTensor* src_trans_tensor = ggml_cann_create_tensor( src_trans_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, src_trans_nb, GGML_MAX_DIMS); cann_copy(ctx, acl_src, src_trans_tensor); ggml_cann_release_resources(ctx, acl_src, src_trans_tensor); } size_t src_reshape_nb[GGML_MAX_DIMS]; src_reshape_nb[0] = ggml_type_size(src0->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { src_reshape_nb[i] = src_reshape_nb[i - 1] * dst->ne[i - 1]; } aclTensor* trans_acl_src = ggml_cann_create_tensor(src_trans_buffer, ggml_cann_type_mapping(src0->type),ggml_type_size(src0->type), dst->ne, src_reshape_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclTensor* acl_dst = ggml_cann_create_tensor(dst); if (dst->type == src0->type) { cann_copy(ctx, trans_acl_src, acl_dst); } else { aclnn_cast(ctx, trans_acl_src, acl_dst, ggml_cann_type_mapping(dst->type)); } ggml_cann_release_resources(ctx, trans_acl_src, acl_dst); } return; } /** * @brief Creates an ACL tensor initialized with zeros using a provided buffer. * * This function initializes a tensor with zeros using the specified buffer and * tensor parameters. * * @param ctx The context for the CANN backend operations. * @param buffer The buffer to be used for the tensor data. * @param n_bytes The size of the buffer in bytes. * @param ne An array specifying the extents (sizes) of each dimension of the * tensor. * @param dims The number of dimensions of the tensor. * @param type The data type of the tensor. * @param type_size The size of each element in the tensor data type. * @return An ACL tensor initialized with zeros. */ static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer, size_t n_bytes, int64_t* ne, int64_t dims, aclDataType type, size_t type_size) { size_t nb[GGML_MAX_DIMS]; nb[0] = type_size; for (int i = 1; i < dims; i++) { nb[i] = nb[i - 1] * ne[i - 1]; } aclTensor* zero = ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceZero, zero); return zero; GGML_UNUSED(n_bytes); } /** * @brief Creates an ACL tensor initialized with value using a provided buffer. * * This function initializes a tensor with value using the specified buffer and * tensor parameters. * * @param ctx The context for the CANN backend operations. * @param buffer The buffer to be used for the tensor data. * @param n_bytes The size of the buffer in bytes. * @param ne An array specifying the extents (sizes) of each dimension of the * tensor. * @param dims The number of dimensions of the tensor. * @param type The data type of the tensor. * @param type_size The size of each element in the tensor data type. * @param value The value to be used for initializing the tensor (default * is 1.0). * @return An ACL tensor initialized with value. */ static aclTensor* aclnn_values(ggml_backend_cann_context& ctx, void* buffer, size_t n_bytes, int64_t* ne, int64_t dims, aclDataType type, size_t type_size, float value = 1.0f) { aclTensor* acl_tensor = aclnn_zero(ctx, buffer, n_bytes, ne, dims, type, type_size); float alpha_host = 1.0f; aclScalar* alpha = aclCreateScalar(&alpha_host, aclDataType::ACL_FLOAT); aclScalar* other = aclCreateScalar(&value, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_tensor, other, alpha); return acl_tensor; } /** * @brief Fills a tensor with a scalar value. * * This function fills the destination tensor `acl_dst` with the scalar value * `scalar`. * * @param ctx The context for the CANN backend operations. * @param scalar The scalar value used to fill the tensor. * @param acl_dst The destination tensor to be filled with the scalar value. */ static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar, aclTensor* acl_dst) { auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceFillScalar, acl_dst, acl_scalar); ggml_cann_release_resources(ctx, acl_scalar); } /** * @brief Get or expand a cached float32 tensor filled with a scalar value. * * This function manages cached device memory for float32 tensors. If the current * cache size is insufficient for the requested tensor shape, the old memory will * be released and new memory will be allocated. The allocated buffer is then * initialized either with zeros (when @p value == 0.0f) or with the given scalar * value using CANN operations. Finally, an aclTensor object is created from the * cached memory and returned. * * @param ctx The CANN backend context that manages device memory. * @param buffer A pointer to the cached device buffer (will be allocated * or reallocated if necessary). * @param cache_element The current number of cached elements. This will be * updated when the cache is expanded. * @param ne The tensor shape array (number of elements in each dimension). * @param nb The stride size for each dimension. * @param dims The number of tensor dimensions. * @param value The scalar value used to fill the tensor (supports zero * initialization via memset or arbitrary values via fill_scalar). * @return An aclTensor pointer created from the cached buffer. */ static aclTensor* get_f32_cache_acl_tensor( ggml_backend_cann_context& ctx, void** buffer, int64_t &cache_element, int64_t* ne, size_t* nb, int64_t dims, float value) { // Calculate total number of elements int64_t n_element = 1; for (int i = 0; i < dims; i++) { n_element *= ne[i]; } size_t size = n_element * sizeof(float); // Allocate or expand cache if needed if (cache_element < n_element) { if (*buffer != nullptr) { aclrtFree(*buffer); *buffer = nullptr; } ACL_CHECK(aclrtMalloc(buffer, size, ACL_MEM_MALLOC_HUGE_FIRST)); cache_element = n_element; // Initialize cache if (value == 0.0f) { ACL_CHECK(aclrtMemsetAsync(*buffer, size, 0, size, ctx.stream())); } else { int64_t pool_ne[1] = { n_element }; size_t pool_nb[1] = { sizeof(float) }; aclTensor* acl_value = ggml_cann_create_tensor( *buffer, ACL_FLOAT, sizeof(float), pool_ne, pool_nb, 1); aclnn_fill_scalar(ctx, 1, acl_value); ggml_cann_release_resources(ctx, acl_value); } } return ggml_cann_create_tensor(*buffer, ACL_FLOAT, sizeof(float), ne, nb, dims); } void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float eps; memcpy(&eps, dst->op_params, sizeof(float)); // build gamma, one... size_t acl_gamma_nb[GGML_MAX_DIMS]; acl_gamma_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { acl_gamma_nb[i] = acl_gamma_nb[i - 1] * src->ne[i - 1]; } aclTensor* acl_gamma = get_f32_cache_acl_tensor( ctx, &ctx.rms_norm_one_tensor_cache.cache, ctx.rms_norm_one_tensor_cache.size, src->ne, acl_gamma_nb, 1, // dims 1.0f // value ); // build rstd, zero... int64_t acl_rstd_ne[] = {src->ne[1], src->ne[2], src->ne[3]}; size_t acl_rstd_nb[GGML_MAX_DIMS - 1]; acl_rstd_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { acl_rstd_nb[i] = acl_rstd_nb[i - 1] * acl_rstd_ne[i - 1]; } aclTensor* acl_rstd = get_f32_cache_acl_tensor( ctx, &ctx.rms_norm_zero_tensor_cache.cache, ctx.rms_norm_zero_tensor_cache.size, acl_rstd_ne, acl_rstd_nb, GGML_MAX_DIMS - 1, 0.0f // value ); GGML_CANN_CALL_ACLNN_OP(ctx, RmsNorm, acl_src, acl_gamma, eps, acl_dst, acl_rstd); ggml_cann_release_resources(ctx, acl_src, acl_dst, acl_gamma, acl_rstd); } // TODO: performace is low. void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); const int n_past = ((int32_t*)dst->op_params)[0]; ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), ggml_nbytes(src)); void* buffer = one_tensor_allocator.get(); aclTensor* mask_tensor = ggml_cann_create_tensor(buffer, ggml_cann_type_mapping(src->type), ggml_type_size(src->type), src->ne, src->nb, GGML_MAX_DIMS); aclnn_fill_scalar(ctx, value, mask_tensor); aclScalar* alpha = nullptr; float alphaValue = 1.0f; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceTriu, mask_tensor, n_past + 1); GGML_CANN_CALL_ACLNN_OP(ctx, Tril, acl_src, n_past + 1, acl_dst); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdd, acl_dst, mask_tensor, alpha); ggml_cann_release_resources(ctx, alpha, acl_src, acl_dst, mask_tensor); } /** * @brief Permutes the dimensions of a tensor according to a specified order. * * This function permutes the dimensions of the source tensor `acl_src` * according to the order specified in the `new_dim` array and stores the result * in the destination tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose dimensions will be permuted. * @param acl_dst The destination tensor where the permuted result will be * stored. * @param new_dim An array specifying the new order of dimensions for the * tensor. * @param dims The number of dimensions in the tensor. */ static void aclnn_permute(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* new_dim, uint64_t dims) { aclIntArray* acl_dims = aclCreateIntArray(new_dim, dims); GGML_CANN_CALL_ACLNN_OP(ctx, Permute, acl_src, acl_dims, acl_dst); ggml_cann_release_resources(ctx, acl_dims); } static void ggml_cann_im2col_2d_post_process(ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1, aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor) { // Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW] int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]}; size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]}; aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1); int64_t permute_dim[] = {0, 2, 1}; if (src1->type != dst->type) { aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3); } else { aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3); } ggml_cann_release_resources(ctx, acl_dst); } static void ggml_cann_im2col_1d_post_process( ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1, aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor, const std::vector& im2col_op_params) { // get params const int64_t KH = im2col_op_params[0]; const int64_t KW = im2col_op_params[1]; const int64_t IW = im2col_op_params[2]; const int64_t IC = im2col_op_params[3]; const int64_t N = im2col_op_params[4]; const int64_t OH = im2col_op_params[5]; const int64_t OW = im2col_op_params[6]; const int64_t s0 = im2col_op_params[7]; const int64_t p0 = im2col_op_params[8]; const int64_t d0 = im2col_op_params[9]; const int64_t n_bytes_factor = im2col_op_params[10]; // Permute: [N, IC * KH * KW, OW * OH] -> // [N, OW * OH * n_bytes_factor, IC * KH * KW] ggml_cann_pool_alloc tmp_permute_allocator(ctx.pool()); tmp_permute_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor); void* tmp_permute_buffer = tmp_permute_allocator.get(); int64_t tmp_permute_ne[] = {IC * KH * KW, OW * OH * n_bytes_factor, N}; size_t tmp_permute_nb[GGML_MAX_DIMS - 1]; tmp_permute_nb[0] = ggml_type_size(dst->type); for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1]; } aclTensor* tmp_permute_tensor = ggml_cann_create_tensor( tmp_permute_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_permute_ne, tmp_permute_nb, GGML_MAX_DIMS - 1, ACL_FORMAT_ND); int64_t permute_dim[] = {0, 2, 1}; if (src1->type != dst->type) { aclnn_permute(ctx, tmp_cast_tensor, tmp_permute_tensor, permute_dim, 3); } else { aclnn_permute(ctx, tmp_im2col_tensor, tmp_permute_tensor, permute_dim, 3); } // number of times the kernel moves in W dimension const int n_step_w = (IW + 2 * p0 - d0 * (KW - 1) - 1) / s0 + 1; size_t offset; void *cur_dst_buffer = dst->data, *cur_permute_buffer = tmp_permute_buffer; // memory copy with offset to restore 1D im2col from 2d if (IC > 1) { offset = IC * KH * KW * n_step_w * ggml_type_size(dst->type); size_t size_cpy = KH * KW * ggml_type_size(dst->type); for (int c = 0; c < IC; c++) { cur_permute_buffer = (char*)tmp_permute_buffer + offset + KH * KW * c * ggml_type_size(dst->type); cur_dst_buffer = (char*)dst->data + c * KH * KW * n_step_w * ggml_type_size(dst->type); for (int i = 0; i < n_step_w; i++) { ggml_cann_async_memcpy(ctx, cur_dst_buffer, cur_permute_buffer, size_cpy, ACL_MEMCPY_DEVICE_TO_DEVICE); cur_dst_buffer = (char*)cur_dst_buffer + KH * KW * ggml_type_size(dst->type); cur_permute_buffer = (char*)cur_permute_buffer + KH * KW * IC * ggml_type_size(dst->type); } } } else { offset = KH * KW * n_step_w * ggml_type_size(dst->type); // equal to ggml_nbytes(dst) ggml_cann_async_memcpy(ctx, dst->data, (char*)tmp_permute_buffer + offset, offset, ACL_MEMCPY_DEVICE_TO_DEVICE); } ggml_cann_release_resources(ctx, tmp_permute_tensor); } void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; // kernel ggml_tensor* src1 = dst->src[1]; // input GGML_TENSOR_BINARY_OP_LOCALS; // aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D // im2col and do post-processing to restore it to 1D. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1; const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; const int32_t s1 = is_2D ? ((const int32_t*)(dst->op_params))[1] : 1; const int32_t p0 = ((const int32_t*)(dst->op_params))[2]; const int32_t p1 = is_2D ? ((const int32_t*)(dst->op_params))[3] : 1; const int32_t d0 = ((const int32_t*)(dst->op_params))[4]; const int32_t d1 = is_2D ? ((const int32_t*)(dst->op_params))[5] : 1; const int64_t N = ne13; const int64_t IC = ne12; const int64_t KH = ne01; const int64_t KW = ne00; const int64_t IW = ne10; const int64_t OH = is_2D ? ne2 : 1; const int64_t OW = ne1; // memory allocated increased to 3x when is_2D == false const int64_t n_bytes_factor = is_2D ? 1 : 3; // im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH * n_bytes_factor] aclTensor* acl_src1 = ggml_cann_create_tensor(src1); int64_t tmp_im2col_ne[] = {OW * OH * n_bytes_factor, IC * KH * KW, N}; size_t tmp_im2col_nb[GGML_MAX_DIMS - 1]; tmp_im2col_nb[0] = ggml_type_size(src1->type); for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { tmp_im2col_nb[i] = tmp_im2col_nb[i - 1] * tmp_im2col_ne[i - 1]; } // Calculate im2col. // If dst is f16, tmp_buffer is f32, we need alloc src.typesize * // dst.elemcount. ggml_cann_pool_alloc im2col_allocator( ctx.pool(), ggml_nelements(dst) * ggml_element_size(src1) * n_bytes_factor); void* tmp_im2col_buffer = im2col_allocator.get(); aclTensor* tmp_im2col_tensor = ggml_cann_create_tensor( tmp_im2col_buffer, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type), tmp_im2col_ne, tmp_im2col_nb, GGML_MAX_DIMS - 1, ACL_FORMAT_ND); std::vector kernel_dims = {KH, KW}; std::vector dilation_size = {d1, d0}; std::vector padding_dims = {p1, p0}; std::vector stride_dims = {s1, s0}; auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); auto* dilations = aclCreateIntArray(dilation_size.data(), 2); auto* paddings = aclCreateIntArray(padding_dims.data(), 2); auto* strides = aclCreateIntArray(stride_dims.data(), 2); GGML_CANN_CALL_ACLNN_OP(ctx, Im2col, acl_src1, kernel_size, dilations, paddings, strides, tmp_im2col_tensor); // Cast if dst is f16. aclTensor* tmp_cast_tensor = nullptr; ggml_cann_pool_alloc tmp_cast_allocator(ctx.pool()); void* tmp_cast_buffer = nullptr; if (src1->type != dst->type) { tmp_cast_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor); tmp_cast_buffer = tmp_cast_allocator.get(); size_t temp_cast_nb[GGML_MAX_DIMS - 1]; temp_cast_nb[0] = ggml_type_size(dst->type); for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { temp_cast_nb[i] = temp_cast_nb[i - 1] * tmp_im2col_ne[i - 1]; } tmp_cast_tensor = ggml_cann_create_tensor( tmp_cast_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_im2col_ne, temp_cast_nb, GGML_MAX_DIMS - 1, ACL_FORMAT_ND); aclnn_cast(ctx, tmp_im2col_tensor, tmp_cast_tensor, ggml_cann_type_mapping(dst->type)); } // post-processing if (is_2D) { ggml_cann_im2col_2d_post_process(ctx, dst, src1, tmp_cast_tensor, tmp_im2col_tensor); } else { std::vector im2col_op_params = { KH, KW, IW, IC, N, OH, OW, s0, p0, d0, n_bytes_factor}; ggml_cann_im2col_1d_post_process(ctx, dst, src1, tmp_cast_tensor, tmp_im2col_tensor, im2col_op_params); } ggml_cann_release_resources(ctx, acl_src1, tmp_im2col_tensor, tmp_cast_tensor, kernel_size, dilations, paddings, strides); } /** * @brief Applies element-wise exponential function to the elements of a tensor. * * This function computes the exponential of each element in the source tensor * `acl_src` and stores the result back into the same tensor. * The operation is defined as: * \f[ * \text {acl_src }_i=e^{acl\_src_i} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The tensor on which the exponential function will be applied. */ static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) { GGML_CANN_CALL_ACLNN_OP(ctx, InplaceExp, acl_src); } void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { if(acl_dst == nullptr) { GGML_CANN_CALL_ACLNN_OP(ctx, InplaceCos, acl_src); } else { GGML_CANN_CALL_ACLNN_OP(ctx, Cos, acl_src, acl_dst); } } void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { if(acl_dst == nullptr) { GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSin, acl_src); } else { GGML_CANN_CALL_ACLNN_OP(ctx, Sin, acl_src, acl_dst); } } void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); const int dim = dst->op_params[0]; const int max_period = dst->op_params[1]; int half = dim / 2; aclTensor* acl_src = ggml_cann_create_tensor(src); // arange: [0, ..., half) float start = 0; float stop = half; float step = 1; int64_t n_elements_arange = half; int64_t tmp_arange_ne[] = {half}; size_t tmp_arange_nb[] = {sizeof(dst->type)}; ggml_cann_pool_alloc arange_allocator(ctx.pool(), half * sizeof(dst->type)); void* tmp_arange_buffer = arange_allocator.get(); aclTensor* tmp_arange_tensor = ggml_cann_create_tensor( tmp_arange_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_arange_ne, tmp_arange_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclnn_arange(ctx, tmp_arange_tensor, start, stop, step, n_elements_arange); // freq float freq_param = -logf(max_period) / half; bool inplace = true; aclnn_muls(ctx, tmp_arange_tensor, freq_param, nullptr, inplace); aclnn_exp(ctx, tmp_arange_tensor); // permute: src [0,1,2,3]->[0,1,3,2] int64_t tmp_permute_ne[] = {src->ne[1], src->ne[0], src->ne[2], src->ne[3]}; size_t tmp_permute_nb[GGML_MAX_DIMS]; tmp_permute_nb[0] = ggml_type_size(src->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1]; } ggml_cann_pool_alloc permute_allocator(ctx.pool(), ggml_nbytes(src)); void* tmp_permute_buffer = permute_allocator.get(); aclTensor* tmp_permute_tensor = ggml_cann_create_tensor( tmp_permute_buffer, ggml_cann_type_mapping(src->type), ggml_type_size(src->type), tmp_permute_ne, tmp_permute_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); int64_t permute_dim[] = {0, 1, 3, 2}; int64_t num_dims = 4; aclnn_permute(ctx, acl_src, tmp_permute_tensor, permute_dim, num_dims); // timestep * freq int64_t tmp_mul_ne[] = {src->ne[1] * half, src->ne[0], src->ne[2], src->ne[3]}; size_t tmp_mul_nb[GGML_MAX_DIMS]; tmp_mul_nb[0] = ggml_type_size(src->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { tmp_mul_nb[i] = tmp_mul_nb[i - 1] * tmp_mul_ne[i - 1]; } int mul_nelements = src->ne[1] * half * src->ne[0] * src->ne[2] * src->ne[3]; ggml_cann_pool_alloc mul_allocator( ctx.pool(), mul_nelements * ggml_type_size(src->type)); void* tmp_mul_buffer = mul_allocator.get(); aclTensor* tmp_mul_tensor = ggml_cann_create_tensor( tmp_mul_buffer, ggml_cann_type_mapping(src->type), ggml_type_size(src->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_mul(ctx, tmp_permute_tensor, tmp_arange_tensor, tmp_mul_tensor); // cos ggml_cann_pool_alloc cos_allocator( ctx.pool(), mul_nelements * ggml_type_size(src->type)); void* tmp_cos_buffer = cos_allocator.get(); aclTensor* tmp_cos_tensor = ggml_cann_create_tensor( tmp_cos_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_cos(ctx, tmp_mul_tensor, tmp_cos_tensor); // sin ggml_cann_pool_alloc sin_allocator( ctx.pool(), mul_nelements * ggml_type_size(src->type)); void* tmp_sin_buffer = sin_allocator.get(); aclTensor* tmp_sin_tensor = ggml_cann_create_tensor( tmp_sin_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_sin(ctx, tmp_mul_tensor, tmp_sin_tensor); // concat int64_t concat_dim = 3; aclTensor* acl_dst = ggml_cann_create_tensor(dst); aclTensor* tensors[] = {tmp_cos_tensor, tmp_sin_tensor}; aclTensorList* tensor_list = aclCreateTensorList(tensors, 2); aclnn_concat(ctx, tensor_list, acl_dst, concat_dim); // release // segmentation fault when delete both tensorList and his elements. ggml_cann_release_resources(ctx, tensor_list, acl_src, tmp_arange_tensor, tmp_permute_tensor, tmp_mul_tensor, acl_dst); } /** * @brief Raises each element of a tensor to the power of the corresponding * element in another tensor. * * This function computes the element-wise power of the destination tensor * `acl_dst` raised to the power of the exponent tensor `acl_exp`. * The operation is defined as: * \f[ * \text {acl_dst }_i=acl\_dst_i^{\text {acl_exp }_i} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_dst The destination tensor, which also serves as the base tensor. * @param acl_exp The exponent tensor, each element of which is used to raise * the corresponding element in the destination tensor. */ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx, aclTensor* acl_dst, aclTensor* acl_exp) { GGML_CANN_CALL_ACLNN_OP(ctx, InplacePowTensorTensor, acl_dst, acl_exp); } /** * @brief Generate a range of values and apply a scalar base exponentiation. * * This function creates an evenly spaced sequence from `start` to `stop` (exclusive), * with step size `step`, stores it in a temporary buffer, and then computes: * * @f[ * slope[i] = m^{\left( start + i \cdot step \right)}, \quad 0 \le i < size * @f] * * The results are written to the provided @p slope_buffer. * * @param ctx CANN backend context for memory allocation and operator execution. * @param slope_buffer Pointer to the output buffer (float array) for the computed slope values. * @param m Scalar base for the exponentiation. * @param size Number of elements in the generated sequence. * @param start Starting exponent offset. * @param stop Stopping exponent offset (exclusive). * @param step Step size for the exponent increment. * @param dtype Data type for slope tensor. */ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer, float m, int64_t size, float start, float stop, float step, ggml_type dtype){ aclDataType acl_type = ggml_cann_type_mapping(dtype); size_t type_size = ggml_type_size(dtype); int64_t ne[] = {size}; size_t nb[] = {type_size}; ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * type_size); void* arange_buffer = arange_allocator.get(); aclTensor* arange_tensor = ggml_cann_create_tensor( arange_buffer, acl_type, type_size, ne, nb, 1); aclnn_arange(ctx, arange_tensor, start, stop, step, size); aclTensor* slope_tensor = ggml_cann_create_tensor( slope_buffer, acl_type, type_size, ne, nb, 1); aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, sc, arange_tensor, slope_tensor); ggml_cann_release_resources(ctx, sc, arange_tensor, slope_tensor); } /** * @brief Compute slope values for multiple attention heads based on ALiBi bias parameters. * * This function generates slope values for each attention head according to the ALiBi * (Attention with Linear Biases) method. It splits the computation into two ranges depending * on whether the head index is less than @p n_head_log2 or not, and uses different base values * (`m0` and `m1`) for the exponentiation. * * @f[ * slope[h] = * \begin{cases} * m_0^{(h + 1)}, & h < n\_head\_log2 \\ * m_1^{\left( 2 \cdot (h - n\_head\_log2) + 1 \right)}, & h \geq n\_head\_log2 * \end{cases} * \quad , \quad \text{if } max\_bias > 0 * @f] * * If @p max_bias <= 0, all slope values are set to 1.0. * * @param ctx CANN backend context for memory allocation and operator execution. * @param n_head Total number of attention heads. * @param slope_buffer Pointer to the output buffer (float array) for storing slopes. * @param max_bias Maximum bias value for slope computation. * @param dtype Data type for slope tensor. * */ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head, void* slope_buffer, float max_bias, ggml_type dtype) { const int n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); float m0 = powf(2.0f, -(max_bias) / n_head_log2); float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); // const float slope = (max_bias > 0.0f) ? // h < n_head_log2 ? // powf(m0, h + 1) : // powf(m1, 2*(h - n_head_log2) + 1) : // 1.0f; // arange1 float start = 0 + 1; float end = (n_head_log2 - 1) + 1; float step = 1; float count = n_head_log2; // end needs to be +1 because aclnn uses a left-closed, right-open interval. aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step, dtype); if (n_head_log2 < n_head) { // arange2 start = 2 * (n_head_log2 - n_head_log2) + 1; end = 2 * ((n_head - 1) - n_head_log2) + 1; step = 2; count = n_head - n_head_log2; aclnn_get_slope_inner( ctx, (char *) slope_buffer + n_head_log2 * sizeof(float), m1, count, start, end + 1, step, dtype); } } /** * @brief Add ALiBi (Attention with Linear Biases) positional biases to the attention mask. * * This function computes the ALiBi slopes for each attention head (if max_bias > 0), * multiplies them with the attention mask to produce bias tensors, and adds these biases * to the destination tensor (@p dst). * * The function performs necessary broadcasting of the mask and slope tensors to match * the shape of the destination tensor, then applies element-wise multiplication and addition * using CANN operators. * * @param ctx CANN backend context for memory management and operator execution. * @param mask Input attention mask tensor, assumed to be contiguous. * @param dst Destination tensor to which ALiBi biases will be added. * @param dst_ptr Pointer to the memory of the destination tensor. * @param max_bias Maximum bias value controlling the slope scaling. * * @note * - Write data into dst_ptr using only the shape information of the dst tensor. * - `GGML_MAX_DIMS + 2` is used to extend tensor dimensions for broadcasting. */ static void aclnn_add_alibi(ggml_backend_cann_context& ctx, ggml_tensor* mask, ggml_tensor* dst, void* dst_ptr, float max_bias) { void* slope_buffer = nullptr; void* bias_buffer = nullptr; if (max_bias > 0.0f) { int64_t n_heads = dst->ne[2]; ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(float)); slope_buffer = slope_allocator.get(); ggml_cann_pool_alloc bias_allocator( ctx.pool(), ggml_nelements(dst) * ggml_element_size(dst)); bias_buffer = bias_allocator.get(); aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias, GGML_TYPE_F32); } // broadcast for mask, slop and dst; int64_t nr2 = dst->ne[2] / mask->ne[2]; int64_t nr3 = dst->ne[3] / mask->ne[3]; // broadcast the mask across rows int64_t mask_ne[] = { mask->ne[0], dst->ne[1], mask->ne[2], 1, mask->ne[3], 1 }; size_t mask_nb[] = { mask_nb[0] = mask->nb[0], mask_nb[1] = mask->nb[1], mask_nb[2] = mask->nb[2], mask_nb[3] = mask->nb[2], mask_nb[4] = mask->nb[3], mask_nb[5] = mask->nb[3] }; int64_t dst_ne[] = { dst->ne[0], dst->ne[1], mask->ne[2], nr2, mask->ne[3], nr3 }; size_t dst_nb[] = { dst_nb[0] = dst->nb[0], dst_nb[1] = dst->nb[1], dst_nb[2] = dst->nb[2], dst_nb[3] = dst->nb[2], dst_nb[4] = dst->nb[3], dst_nb[5] = dst->nb[3] }; // slope is a 1 dim tensor, slope.ne2 == dst.ne2 int64_t slope_ne[] = { 1, 1, mask->ne[2], nr2, 1, 1 }; size_t slope_nb[GGML_MAX_DIMS + 2]; slope_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS + 2; i++) { slope_nb[i] = slope_nb[i - 1] * slope_ne[i - 1]; } aclTensor* acl_slope = ggml_cann_create_tensor( slope_buffer, ACL_FLOAT, sizeof(float), slope_ne, slope_nb, GGML_MAX_DIMS + 2); aclTensor* acl_mask = ggml_cann_create_tensor( mask, mask_ne, mask_nb, GGML_MAX_DIMS + 2); // write data into dst_ptr using only the shape information of the dst tensor. aclTensor* acl_dst = ggml_cann_create_tensor( dst_ptr, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), dst_ne, dst_nb, GGML_MAX_DIMS + 2); if (max_bias > 0.0f) { int64_t bias_ne[] = { mask->ne[0], dst->ne[1], mask->ne[2], nr2, mask->ne[3], 1 }; size_t bias_nb[GGML_MAX_DIMS + 2]; bias_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS + 2; i++) { bias_nb[i] = bias_nb[i - 1] * bias_ne[i - 1]; } aclTensor* bias_tensor = ggml_cann_create_tensor( bias_buffer, ACL_FLOAT, sizeof(float), bias_ne, bias_nb, GGML_MAX_DIMS + 2); aclnn_mul(ctx, acl_slope, acl_mask, bias_tensor); aclnn_add(ctx, acl_dst, bias_tensor); ggml_cann_release_resources(ctx, bias_tensor); } else { aclnn_add(ctx, acl_dst, acl_mask); } ggml_cann_release_resources(ctx, acl_slope, acl_mask, acl_dst); } void ggml_cann_cpy(ggml_backend_cann_context & ctx, ggml_tensor * dst) { ggml_cann_dup(ctx, dst); } /** * @brief Applies the softmax function to a tensor along a specified dimension. * * This function computes the softmax of the source tensor `acl_src` along the * specified dimension `dim` and stores the result in the destination tensor * `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor on which the softmax function will be * applied. * @param dim The dimension along which the softmax function will be computed. * @param acl_dst The destination tensor where the softmax results will be * stored. */ static void aclnn_softmax(ggml_backend_cann_context & ctx, aclTensor* acl_src, int64_t dim, aclTensor * acl_dst) { GGML_CANN_CALL_ACLNN_OP(ctx, Softmax, acl_src, dim, acl_dst); } void ggml_cann_softmax(ggml_backend_cann_context & ctx, ggml_tensor * dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; // mask aclTensor* acl_src0 = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float scale = 1.0f; float max_bias = 0.0f; memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); // input mul scale aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT); ggml_cann_pool_alloc src_tensor_allocator(ctx.pool(), ggml_nbytes(src0)); void* src_tensor_buffer = src_tensor_allocator.get(); aclTensor* softmax_tensor = ggml_cann_create_tensor( src_tensor_buffer, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), src0->ne, src0->nb,GGML_MAX_DIMS); aclnn_muls(ctx, acl_src0, scale, softmax_tensor, false); // mask if (src1) { aclnn_add_alibi(ctx, src1, src0, src_tensor_buffer, max_bias); } // softmax aclnn_softmax(ctx, softmax_tensor, 3, acl_dst); ggml_cann_release_resources(ctx, acl_src0, acl_dst, acl_scale, softmax_tensor); } /** * @brief Performs index select operation on a 4D tensor using the CANN backend. * * This function applies the `IndexSelect` operation along a specific dimension * of the source tensor (`src_buffer`) using the indices from the index tensor (`index`). * It iterates over the last two dimensions of the source tensor, creates the corresponding * CANN tensors for the source, index, and output slices, and executes the `IndexSelect` * operation for each slice. * * @param ctx The context for CANN backend operations. * @param src_buffer The source buffer containing the 4D input tensor data. * @param src_ne The dimensions of the source tensor. * @param src_nb The strides (byte offsets) of the source tensor. * @param dst_buffer The destination buffer where the output tensor data will be written. * @param dst_ne The dimensions of the destination tensor. * @param dst_nb The strides (byte offsets) of the destination tensor. * @param index The index tensor specifying the indices to select from the source tensor. * @param type The data type of the source and destination tensors. */ static void aclnn_index_select_4d(ggml_backend_cann_context& ctx, void* src_buffer,int64_t* src_ne, size_t* src_nb, void* dst_buffer, int64_t* dst_ne, size_t* dst_nb, ggml_tensor* index, ggml_type type) { for (int64_t i = 0; i < src_ne[3]; i++) { for (int64_t j = 0; j < src_ne[2]; j++) { // src aclTensor* acl_src_tensor = ggml_cann_create_tensor( (char*)src_buffer + i * src_nb[3] + j * src_nb[2], ggml_cann_type_mapping(type), ggml_type_size(type), src_ne, src_nb, 2); // index aclTensor* acl_index = ggml_cann_create_tensor( (char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1], ggml_cann_type_mapping(index->type), ggml_element_size(index), index->ne, index->nb, 1); // out aclTensor* acl_out = ggml_cann_create_tensor( (char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2], ggml_cann_type_mapping(type), ggml_type_size(type), dst_ne, dst_nb, 2); GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, acl_src_tensor, 0, acl_index, acl_out); ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out); } } } /** * @brief Performs inplace index copy operation on a 4D tensor using the CANN backend. * * This function applies the `IndexCopy` operation along a specific dimension of the * destination tensor (`dst_buffer`) by copying elements from the source tensor (`src_buffer`) * to positions specified by the index tensor (`index`). * It iterates over the last two dimensions of the tensors, creates the corresponding * CANN tensors for source, index, and destination slices, and performs the index copy * operation for each slice. * * @param ctx The context for CANN backend operations. * @param src_buffer The source buffer containing the 4D input tensor data to be copied. * @param src_ne The dimensions of the source tensor. * @param src_nb The strides (byte offsets) of the source tensor. * @param dst_buffer The destination buffer where values will be copied to. * @param dst_ne The dimensions of the destination tensor. * @param dst_nb The strides (byte offsets) of the destination tensor. * @param index The index tensor specifying target positions in the destination tensor. * @param type The data type of the source and destination tensors. */ static void aclnn_index_copy_4d(ggml_backend_cann_context& ctx, void* src_buffer,int64_t* src_ne, size_t* src_nb, void* dst_buffer, int64_t* dst_ne, size_t* dst_nb, ggml_tensor* index, ggml_type type) { for (int64_t i = 0; i < src_ne[3]; i++) { for (int64_t j = 0; j < src_ne[2]; j++) { // src aclTensor* acl_src_tensor = ggml_cann_create_tensor( (char*)src_buffer + i * src_nb[3] + j * src_nb[2], ggml_cann_type_mapping(type), ggml_type_size(type), src_ne, src_nb, 2); // index aclTensor* acl_index = ggml_cann_create_tensor( (char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1], ggml_cann_type_mapping(index->type), ggml_element_size(index), index->ne, index->nb, 1); // out aclTensor* acl_out = ggml_cann_create_tensor( (char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2], ggml_cann_type_mapping(type), ggml_type_size(type), dst_ne, dst_nb, 2); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexCopy, acl_out, 0, acl_index, acl_src_tensor); ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out); } } } void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; // src ggml_tensor* src1 = dst->src[1]; // index switch (src0->type) { case GGML_TYPE_F32: { aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb, dst->data, dst->ne, dst->nb, src1, dst->type); break; } case GGML_TYPE_F16: { aclTensor* acl_src0 = ggml_cann_create_tensor(src0); ggml_cann_pool_alloc src_buffer_allocator( ctx.pool(), ggml_nelements(src0) * sizeof(float)); void* src_trans_buffer = src_buffer_allocator.get(); size_t src_trans_nb[GGML_MAX_DIMS]; src_trans_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1]; } aclTensor* src_trans_tensor = ggml_cann_create_tensor( src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type), src0->ne, src_trans_nb, GGML_MAX_DIMS); aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type)); aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb, dst->data, dst->ne, dst->nb, src1, dst->type); ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor); break; } case GGML_TYPE_Q8_0: { // add 1 dim for bcast mul. size_t weight_nb[GGML_MAX_DIMS + 1], scale_nb[GGML_MAX_DIMS + 1], dequant_nb[GGML_MAX_DIMS + 1]; int64_t weight_ne[GGML_MAX_DIMS + 1], scale_ne[GGML_MAX_DIMS + 1], *dequant_ne; int64_t scale_offset = 0; // [3,4,5,64] -> [3,4,5,2,32] weight_ne[0] = QK8_0; weight_ne[1] = src0->ne[0] / QK8_0; weight_nb[0] = sizeof(int8_t); weight_nb[1] = weight_nb[0] * weight_ne[0]; for (int i = 2; i < GGML_MAX_DIMS + 1; i++) { weight_ne[i] = src0->ne[i - 1]; weight_nb[i] = weight_nb[i - 1] * weight_ne[i - 1]; } // [3,4,5,64] -> [3,4,5,2,1] scale_ne[0] = 1; scale_ne[1] = src0->ne[0] / QK8_0; scale_nb[0] = sizeof(uint16_t); scale_nb[1] = scale_nb[0] * scale_ne[0]; for (int i = 2; i < GGML_MAX_DIMS + 1; i++) { scale_ne[i] = src0->ne[i - 1]; scale_nb[i] = scale_nb[i - 1] * scale_ne[i - 1]; } // [3,4,5,64] -> [3,4,5,2,32] dequant_ne = weight_ne; dequant_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS + 1; i++) { dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1]; } scale_offset = ggml_nelements(src0) * sizeof(int8_t); ggml_cann_pool_alloc dequant_buffer_allocator( ctx.pool(), ggml_nelements(src0) * sizeof(float)); aclTensor* acl_weight_tensor = ggml_cann_create_tensor( src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb, GGML_MAX_DIMS + 1); aclTensor* acl_scale_tensor = ggml_cann_create_tensor( src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb, GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset); aclTensor* dequant_tensor = ggml_cann_create_tensor( dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float), dequant_ne, dequant_nb, GGML_MAX_DIMS + 1); aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor); dequant_nb[0] = sizeof(float); dequant_ne = src0->ne; for (int i = 1; i < GGML_MAX_DIMS; i++) { dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1]; } aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(), dequant_ne, dequant_nb, dst->data, dst->ne, dst->nb, src1, dst->type); ggml_cann_release_resources(ctx, dequant_tensor); break; } default: GGML_ABORT("Unsupported tensor type for GGML_OP_GET_ROWS"); break; } } void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; // src ggml_tensor* src1 = dst->src[1]; // index switch (dst->type) { case GGML_TYPE_F32: { aclnn_index_copy_4d(ctx, src0->data, src0->ne, src0->nb, dst->data, dst->ne, dst->nb, src1, dst->type); break; } case GGML_TYPE_F16: { aclTensor* acl_src0 = ggml_cann_create_tensor(src0); ggml_cann_pool_alloc src_buffer_allocator( ctx.pool(), ggml_nelements(src0) * sizeof(uint16_t)); void* src_trans_buffer = src_buffer_allocator.get(); size_t src_trans_nb[GGML_MAX_DIMS]; src_trans_nb[0] = sizeof(uint16_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1]; } aclTensor* src_trans_tensor = ggml_cann_create_tensor( src_trans_buffer, ACL_FLOAT16, ggml_type_size(dst->type), src0->ne, src_trans_nb, GGML_MAX_DIMS); aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type)); aclnn_index_copy_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb, dst->data, dst->ne, dst->nb, src1, dst->type); ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor); break; } default: GGML_ABORT("Unsupported tensor type for GGML_OP_SET_ROWS"); break; } } /** * @brief Repeats elements of a tensor along a specified dimension. * * This function repeats each element of the source tensor `acl_src` a specified * number of times (`repeats`) along the specified dimension `dim` and stores * the result in the destination tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose elements will be repeated. * @param acl_dst The destination tensor where the repeated elements will be * stored. * @param dim The dimension along which the elements will be repeated. * @param repeats The number of times each element will be repeated. * @param output_size The size of the output tensor. */ static void aclnn_repeat_interleave(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t dim, int64_t repeats, int64_t output_size) { GGML_CANN_CALL_ACLNN_OP(ctx, RepeatInterleaveIntWithDim, acl_src, repeats, dim, output_size, acl_dst); } /** * @brief Performs matrix multiplication with floating-point precision on * tensors using the CANN backend. * * This function performs matrix multiplication of the input tensor and the * weight tensor, handling broadcasting and transposing as needed, and stores * the result in the destination tensor `dst`. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result of the matrix * multiplication will be stored. */ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* weight = dst->src[0]; // weight ggml_tensor* input = dst->src[1]; // input // when weight ne2 or ne3 is 1, aclnnMatmulGetWorkspaceSize will auto // broadcast, when weight ne2 or ne3 is not 1, weight need repeat. BCAST_MUL_MAT_SHAPE(input, weight, dst); int64_t n_dims = bcast_dims; if (bcast_input_ne[3] == bcast_weight_ne[3] && bcast_input_ne[3] == 1) { if (bcast_input_ne[2] == 1 && bcast_weight_ne[2] == 1) { n_dims = 2; } else if (bcast_input_ne[2] == 1) { n_dims = 3; } } aclTensor* acl_input_tensor = ggml_cann_create_tensor(input, bcast_input_ne, bcast_input_nb, n_dims); int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0], bcast_weight_ne[2], bcast_weight_ne[3], bcast_weight_ne[4], bcast_weight_ne[5]}; size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0], bcast_weight_nb[2], bcast_weight_nb[3], bcast_weight_nb[4], bcast_weight_nb[5]}; aclTensor* acl_weight_tensor; // Only check env once. static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("")); if (weight_to_nz && is_matmul_weight(weight)) { int64_t acl_stride[2] = {1, transpose_ne[1]}; // Reverse ne. std::reverse(transpose_ne, transpose_ne + n_dims); std::vector storageDims = {transpose_ne[0], transpose_ne[1]}; acl_weight_tensor = aclCreateTensor( transpose_ne, n_dims, ggml_cann_type_mapping(weight->type), acl_stride, 0, ACL_FORMAT_FRACTAL_NZ, storageDims.data(), 2, weight->data); } else { acl_weight_tensor = ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims, ACL_FORMAT_ND); } aclTensor* acl_dst = ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims); switch (n_dims) { case 2: GGML_CANN_CALL_ACLNN_OP(ctx, Mm, acl_input_tensor, acl_weight_tensor, acl_dst, 2); break; case 3: GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, acl_input_tensor, acl_weight_tensor, acl_dst, 2); break; default: // ALLOW_FP32_DOWN_PRECISION, when input is // fp32, atlas a2 will transpose it to HFLOAT32. GGML_CANN_CALL_ACLNN_OP(ctx, Matmul, acl_input_tensor, acl_weight_tensor, acl_dst, 1); break; } ggml_cann_release_resources(ctx, acl_weight_tensor, acl_input_tensor, acl_dst); } /** * @brief Performs matrix multiplication with quantized weights and * floating-point inputs using the CANN backend. * * This function performs matrix multiplication of the input tensor `src1` and * the weight tensor `src0`, handling broadcasting, transposing, and * quantization as needed, and stores the result in the destination tensor * `dst`. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result of the matrix * multiplication will be stored. */ static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst, const enum ggml_type type) { ggml_tensor* src0 = dst->src[0]; // weight ggml_tensor* src1 = dst->src[1]; // input // The shape of the weight is NCHW. // Matrix multiplication uses HW dims. // HC is regarded as batch. // weight need transpose. float weight_elem_size; if (type == GGML_TYPE_Q4_0) { weight_elem_size = float(sizeof(uint8_t)) / 2; } else if (type == GGML_TYPE_Q8_0) { weight_elem_size = float(sizeof(uint8_t)); } else { GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT"); } float weight_nb[] = {src0->ne[0] * weight_elem_size, weight_elem_size}; size_t weight_stride = src0->ne[1] * src0->ne[0] * weight_elem_size; size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3]; // scale stored at the end of weight. Also need transpose. size_t scale_elem_size = sizeof(uint16_t); size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size, scale_elem_size}; size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size; char* scale_offset = (char*)src0->data + weight_size; // input size_t input_elem_size = sizeof(uint16_t); int64_t input_ne[] = {src1->ne[0], src1->ne[1]}; size_t input_nb[] = {input_elem_size, input_ne[0] * input_elem_size}; size_t input_stride = input_ne[0] * input_ne[1] * input_elem_size; ggml_cann_pool_alloc input_alloctor(ctx.pool()); void* input_buffer = src1->data; // case in if (src1->type != GGML_TYPE_F16) { aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1); input_buffer = input_alloctor.alloc(ggml_nelements(src1) * input_elem_size); int64_t* input_cast_ne = src1->ne; size_t input_cast_nb[GGML_MAX_DIMS]; input_cast_nb[0] = sizeof(uint16_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_cast_nb[i] = input_cast_nb[i - 1] * input_cast_ne[i - 1]; } aclTensor* acl_input_tensor = ggml_cann_create_tensor( input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne, input_cast_nb, GGML_MAX_DIMS); aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16); ggml_cann_release_resources(ctx, acl_input_tensor, acl_src1_tensor); } // output size_t output_elem_size = sizeof(uint16_t); size_t output_nb[] = {output_elem_size, dst->ne[0] * output_elem_size}; ggml_cann_pool_alloc output_allocator(ctx.pool()); void* output_buffer = output_allocator.alloc(ggml_nelements(dst) * output_elem_size); size_t output_stride = dst->ne[0] * dst->ne[1] * output_elem_size; // aclnn int64_t max_elem_size = 65535; int64_t split_size = (src0->ne[1] / max_elem_size) + 1; ggml_cann_pool_alloc workspace_allocator(ctx.pool()); for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) { for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) { int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]); int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]); int64_t batch1 = (n1 * src1->ne[2]) + c1; int64_t batch0 = (n0 * src0->ne[2]) + c0; aclTensor* acl_input_tensor = ggml_cann_create_tensor( (char*)input_buffer + batch1 * input_stride, ACL_FLOAT16, input_elem_size, input_ne, input_nb, 2); // first split int64_t weight_ne_offset = 0; int64_t weight_ne[2] = { max_elem_size > src0->ne[1] ? src0->ne[1] : max_elem_size, src0->ne[0]}; int64_t scale_ne_offset = 0; int64_t scale_ne[2] = {weight_ne[0], weight_ne[1] / QK8_0}; int64_t output_ne_offset = 0; int64_t output_ne[2] = {weight_ne[0], dst->ne[1]}; aclTensor* acl_weight_tensor = ggml_cann_create_tensor( (char*)src0->data + batch0 * weight_stride, ggml_cann_type_mapping(type), weight_elem_size, weight_ne, weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset); aclTensor* acl_scale_tensor = ggml_cann_create_tensor( scale_offset + batch0 * scale_stride, ACL_FLOAT16, scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND, scale_ne_offset); aclTensor* acl_output_tensor = ggml_cann_create_tensor( (char*)output_buffer + batch1 * output_stride, ACL_FLOAT16, output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND, output_ne_offset); int64_t antiquantGroupSize = 0; if (src0->ne[0] > QK8_0) { antiquantGroupSize = QK8_0; } GGML_CANN_CALL_ACLNN_OP(ctx, WeightQuantBatchMatmulV2, acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr, nullptr, nullptr, nullptr, antiquantGroupSize, acl_output_tensor); ggml_cann_release_resources(ctx, acl_weight_tensor, acl_scale_tensor, acl_output_tensor); // other splits for (int64_t split = 1; split < split_size; split++) { weight_ne_offset += weight_elem_size * weight_ne[0] * weight_ne[1]; weight_ne[0] = max_elem_size * (split + 1) > src0->ne[1] ? src0->ne[1] - (max_elem_size * split) : max_elem_size; scale_ne_offset += scale_elem_size * scale_ne[0] * scale_ne[1]; scale_ne[0] = weight_ne[0]; output_ne_offset += output_elem_size * output_ne[0] * output_ne[1]; output_ne[0] = weight_ne[0]; acl_weight_tensor = ggml_cann_create_tensor( (char*)src0->data + batch0 * weight_stride, ggml_cann_type_mapping(type), weight_elem_size, weight_ne, weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset); acl_scale_tensor = ggml_cann_create_tensor( scale_offset + batch0 * scale_stride, ACL_FLOAT16, scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND, scale_ne_offset); acl_output_tensor = ggml_cann_create_tensor( (char*)output_buffer + batch1 * output_stride, ACL_FLOAT16, output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND, output_ne_offset); GGML_CANN_CALL_ACLNN_OP(ctx, WeightQuantBatchMatmulV2, acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr, nullptr, nullptr, nullptr, antiquantGroupSize, acl_output_tensor); ggml_cann_release_resources(ctx, acl_weight_tensor, acl_scale_tensor, acl_output_tensor); } ggml_cann_release_resources(ctx, acl_input_tensor); } } // cast out if (dst->type != GGML_TYPE_F16) { int64_t* output_cast_ne = dst->ne; size_t output_cast_nb[GGML_MAX_DIMS]; output_cast_nb[0] = sizeof(uint16_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1]; } aclTensor* acl_output_tensor = ggml_cann_create_tensor( output_buffer, ACL_FLOAT16, output_elem_size, output_cast_ne, output_cast_nb, GGML_MAX_DIMS); aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst); aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type)); ggml_cann_release_resources(ctx, acl_output_tensor, acl_dst_tensor); } } void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const enum ggml_type type = dst->src[0]->type; switch (type) { case GGML_TYPE_F32: case GGML_TYPE_F16: ggml_cann_mat_mul_fp(ctx, dst); break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: ggml_cann_mul_mat_quant(ctx, dst, type); break; default: GGML_ABORT("Unsupported type for mul_mat"); break; } } /** * @brief Rolls the elements of a tensor along a specified dimension. * * This function rolls the elements of the source tensor `acl_src` by the * specified shifts `shifts` along the specified dimensions `dims`, and stores * the result in the destination tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose elements will be rolled. * @param acl_dst The destination tensor where the rolled elements will be * stored. * @param shifts An array specifying the number of positions by which elements * are shifted. * @param dims An array specifying the dimensions along which elements are * shifted. */ static void aclnn_roll(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* shifts, int64_t* dims) { aclIntArray* acl_shifts = aclCreateIntArray(shifts, 1); aclIntArray* acl_dims = aclCreateIntArray(dims, 1); GGML_CANN_CALL_ACLNN_OP(ctx, Roll, acl_src, acl_shifts, acl_dims, acl_dst); ggml_cann_release_resources(ctx, acl_shifts, acl_dims); } /** * @brief Fills specified positions of a tensor with a scalar value. * * This function fills the positions in the source tensor `acl_src` specified by * `index` along the dimension `dim` with the scalar value `value`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor where the positions will be filled. * @param dim The dimension along which the positions are specified. * @param index An array specifying the positions to be filled. * @param index_num The number of positions specified in the index array. * @param value The scalar value used to fill the specified positions. */ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx, aclTensor* acl_src, int64_t dim, int64_t* index, int64_t index_num, float value) { aclIntArray* acl_index = aclCreateIntArray(index, index_num); aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexFillTensor, acl_src, dim, acl_index, acl_value); ggml_cann_release_resources(ctx, acl_index, acl_value); } /** * @brief Initializes and caches sine/cosine positional encoding values * (used in RoPE, Rotary Position Embedding) for attention layers. * * This function computes and caches the sin/cos values of * θ = position * theta_scale for RoPE encoding. The cache is shared * across attention layers, and only the first attention layer will * trigger initialization. The cache includes repeated sin/cos values * with different repeat methods depending on the @param is_neox flag. * * Steps performed by this function: * 1. Identify whether the target tensor belongs to Q/K in attention * and restrict computation to the first layer only. * 2. Initialize the theta scale array (arange → power → freq scaling). * 3. Allocate sin/cos caches if the max prompt length increases. * 4. Compute θ = position * theta_scale. * 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor. * 6. Expand sin/cos values by repeat or repeat_interleave depending * on whether @param is_neox is enabled. * * @param ctx The CANN backend context, holding memory pool, * stream, and persistent buffers for rope init/cache. * @param dst The destination ggml_tensor whose computation * depends on the RoPE values (usually Qcur/Kcur). * @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values. * @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values. * @param theta_scale Scalar exponent base for computing theta scale values. * @param freq_scale Frequency scaling factor, applied to theta scale. * @param attn_factor Attention scaling factor, applied to sin/cos. * @param is_neox Whether to use Neox-style repeat strategy * (dim expansion vs repeat_interleave). */ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, void* sin_tensor_buffer, void* cos_tensor_buffer, float* corr_dims, float ext_factor, float theta_scale, float freq_scale, float attn_factor, bool is_neox) { // int sin/cos cache, cache has different repeat method depond on // @param.is_neox ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src1 = dst->src[1]; // position ggml_tensor* src2 = dst->src[2]; // freq_factors int64_t theta_scale_length = src0->ne[0] / 2; int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1}; size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float), theta_scale_length * sizeof(float)}; GGML_ASSERT(src1->type == GGML_TYPE_I32); int64_t position_length = src1->ne[0]; int64_t position_ne[] = {1, 1, position_length, 1}; size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t), sizeof(int32_t), sizeof(int32_t) * position_length}; int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1}; size_t theta_nb[GGML_MAX_DIMS]; theta_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1]; } // theta_scale arange, [0,1,...,ne00/2 - 1] aclTensor* acl_theta_scale_tensor = nullptr; // cache theta scale if (ctx.rope_cache.theta_scale_length != theta_scale_length || // theta_scale and freq_scale should not change during the current token inference process, // so we can directly use == here instead of comparing the absolute difference. ctx.rope_cache.theta_scale != theta_scale || ctx.rope_cache.freq_scale != freq_scale) { ctx.rope_cache.theta_scale_length = theta_scale_length; ctx.rope_cache.theta_scale = theta_scale; ctx.rope_cache.freq_scale = freq_scale; if (ctx.rope_cache.theta_scale_cache != nullptr) { ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache)); } ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST)); acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); float start = 0; float step = 1; float stop = theta_scale_length; float n_elements = theta_scale_length; aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements); ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool()); aclTensor* acl_yarn_ramp_tensor = nullptr; if (ext_factor != 0) { // -rope_yarn_ramp // const float y = (i0 / 2 - low) / MAX(0.001f, high - low); // return MIN(1, MAX(0, y)) - 1; yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float)); void* yarn_ramp_buffer = yarn_ramp_allocator.get(); acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float_t), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); float zero_value = 0, one_value = 1; float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]); aclScalar* low = aclCreateScalar(&corr_dims[0], aclDataType::ACL_FLOAT); aclScalar* zero = aclCreateScalar(&zero_value, aclDataType::ACL_FLOAT); aclScalar* one = aclCreateScalar(&one_value, aclDataType::ACL_FLOAT); aclScalar* denom_safe = aclCreateScalar(&denom_safe_value, aclDataType::ACL_FLOAT); aclScalar* ext_factor_sc = aclCreateScalar(&ext_factor, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, Subs, acl_theta_scale_tensor, low, one, acl_yarn_ramp_tensor); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor, denom_safe); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor, zero, zero); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor, one); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor, one, one); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, ext_factor_sc); // theta_interp = freq_scale * theta_extrap; // theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; // theta = freq_scale * theta_extrap * (1 - ramp_mix) + theta_extrap * ramp_mix; // theta = freq_scale * theta_extrap - freq_scale * theta_extrap * ramp_mix + theta_extrap * ramp_mix; // theta = theta_extrap * (freq_scale - freq_scale * ramp_mix + ramp_mix); // // we cache (freq_scale - freq_scale * ramp_mix + ramp_mix), Considering that the rope_yarn_ramp here is the inverse // cache freq_scale + (freq_scale - 1) * ramp_mix float freq_scale_1 = freq_scale - 1; aclScalar* freq_scale_sc = aclCreateScalar(&freq_scale, aclDataType::ACL_FLOAT); aclScalar* freq_scale_1_sc = aclCreateScalar(&freq_scale_1, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, freq_scale_1_sc); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor, freq_scale_sc, one); ggml_cann_release_resources(ctx, low, zero, one, denom_safe, ext_factor_sc, freq_scale_sc, freq_scale_1_sc); } // power aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor, acl_theta_scale_tensor); if (ext_factor != 0) { aclnn_mul(ctx, acl_theta_scale_tensor, acl_yarn_ramp_tensor); } else if (freq_scale != 1) { aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true); } ggml_cann_release_resources(ctx, acl_yarn_ramp_tensor, acl_theta_scale); } else { // use cache acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); } ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool()); // freq_factors if (src2) { freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float)); void* freq_fac_res_ptr = freq_fac_res_allocator.get(); aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( src2->data, ggml_cann_type_mapping(src2->type), ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor( freq_fac_res_ptr, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor); std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor); ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor); } // position aclTensor* acl_position_tensor = ggml_cann_create_tensor( src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS); // power * position int64_t theta_length = theta_scale_length * position_length; ggml_cann_pool_alloc theta_allocator(ctx.pool(), theta_length * sizeof(float)); void* theta_buffer = theta_allocator.get(); aclTensor* acl_theta_tensor = ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor, acl_theta_tensor); // sin/cos ggml_cann_pool_alloc sin_allocator(ctx.pool(), theta_length * sizeof(float)); void* sin_buffer = sin_allocator.get(); aclTensor* acl_sin_tensor = ggml_cann_create_tensor( sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor); ggml_cann_pool_alloc cos_allocator(ctx.pool(), theta_length * sizeof(float)); void* cos_buffer = cos_allocator.get(); aclTensor* acl_cos_tensor = ggml_cann_create_tensor( cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor); if (ext_factor != 0) { attn_factor *= 1.0f + 0.1f * logf(1.0f / freq_scale); } // attn_factor if (attn_factor != 1) { aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true); aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true); } int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; sin_reshape_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_repeat_tensor = ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_repeat_tensor = ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); // repeat if (is_neox) { int64_t repeatsArray[] = {1, 1, 1, 2}; aclnn_repeat(ctx, acl_sin_tensor, acl_sin_repeat_tensor, repeatsArray); aclnn_repeat(ctx, acl_cos_tensor, acl_cos_repeat_tensor, repeatsArray); } else { int64_t num_repeats = 2; int64_t dim = 3; int64_t output_size = theta_scale_length * num_repeats; aclnn_repeat_interleave(ctx, acl_sin_tensor, acl_sin_repeat_tensor, dim, num_repeats, output_size); aclnn_repeat_interleave(ctx, acl_cos_tensor, acl_cos_repeat_tensor, dim, num_repeats, output_size); } ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor, acl_theta_tensor, acl_sin_tensor, acl_sin_repeat_tensor, acl_cos_tensor, acl_cos_repeat_tensor); } #ifdef __cplusplus extern "C" { #endif aclnnStatus aclnnRotaryPositionEmbeddingGetWorkspaceSize( const aclTensor* x, const aclTensor* cos, const aclTensor* sin, int64_t mode, const aclTensor* yOut, uint64_t* workspaceSize, aclOpExecutor** executor); aclnnStatus aclnnRotaryPositionEmbedding(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream); #ifdef __cplusplus } #endif void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: use ascendc // Only test with LLAMA model. ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src1 = dst->src[1]; // param float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; // const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t*)dst->op_params)[1]; const int mode = ((int32_t*)dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t*)dst->op_params)[4]; GGML_TENSOR_UNARY_OP_LOCALS memcpy(&freq_base, (int32_t*)dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t*)dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t*)dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t*)dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float)); // TODO: n_dims <= ne0 GGML_ASSERT(n_dims == ne0); GGML_ASSERT(n_dims % 2 == 0); const float theta_scale = powf(freq_base, -2.0f / n_dims); float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; // sin/cos tensor length. int64_t repeat_theta_length = src0->ne[0] * src1->ne[0]; ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); void *sin_tensor_buffer = sin_tensor_allocator.get(); void *cos_tensor_buffer = cos_tensor_allocator.get(); // init ctx.rope_cos/rope_sin cache aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox); int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; sin_reshape_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_reshape_tensor = ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_reshape_tensor = ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_src = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); #ifdef ASCEND_310P // Special ROPE operation for 310P // roll input void* input_roll_buffer; aclTensor* acl_minus_one_tensor; void* minus_one_scale_buffer = nullptr; ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0)); ggml_cann_pool_alloc minus_one_scale_allocator( ctx.pool(), sizeof(float) * src0->ne[0]); if (!is_neox) { // roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...] input_roll_buffer = roll_allocator.get(); int64_t input_roll_ne[4] = {2, src0->ne[1] * (src0->ne[0] / 2), src0->ne[2], src0->ne[3]}; size_t input_roll_nb[GGML_MAX_DIMS]; input_roll_nb[0] = ggml_type_size(src0->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_roll_nb[i] = input_roll_nb[i - 1] * input_roll_ne[i - 1]; } aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor( input_roll_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), input_roll_ne, input_roll_nb, GGML_MAX_DIMS); aclTensor* acl_input_tensor = ggml_cann_create_tensor( src0->data, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), input_roll_ne, input_roll_nb, GGML_MAX_DIMS); int64_t shifts[] = {1}; int64_t dims[] = {3}; aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); ggml_cann_release_resources(ctx, acl_input_roll_tensor, acl_input_tensor); // init [-1, 1, -1, 1, ...] minus_one_scale_buffer = minus_one_scale_allocator.get(); int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; minus_one_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_values( ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0], minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1); int64_t dim = 3; int64_t* index = new int64_t[src0->ne[0]]; for (int i = 0; i < src0->ne[0]; i++) { index[i] = i / 2 * 2; } int64_t index_num = src0->ne[0]; float value = -1; aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index, index_num, value); } else { // roll input: [q0,q1,q2,...] -> // [q_half,q_half+1,...,q_end,q0,q1,...q_half-1] input_roll_buffer = roll_allocator.get(); aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor( input_roll_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS); aclTensor* acl_input_tensor = ggml_cann_create_tensor(src0); int64_t shifts[] = {src0->ne[0] / 2}; int64_t dims[] = {3}; aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); ggml_cann_release_resources(ctx, acl_input_roll_tensor, acl_input_tensor); // init [-1, -1, -1, 1, 1,1,...] minus_one_scale_buffer = minus_one_scale_allocator.get(); int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; minus_one_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_values( ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0], minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1); // -1 * first half int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1}; size_t first_half_nb[GGML_MAX_DIMS]; first_half_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1]; } aclTensor* acl_first_half_tensor = ggml_cann_create_tensor( minus_one_scale_buffer, ACL_FLOAT, sizeof(float), first_half_ne, first_half_nb, GGML_MAX_DIMS); bool inplace = true; float scale = -1; aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace); ggml_cann_release_resources(ctx, acl_first_half_tensor); } // TODO: n_dims < ne0 GGML_ASSERT(n_dims == src0->ne[0]); // input * scale ggml_cann_pool_alloc roll_mul_scale_allocator(ctx.pool(), ggml_nbytes(src0)); void* input_roll_mul_scale_buffer = roll_mul_scale_allocator.get(); size_t input_nb[GGML_MAX_DIMS]; input_nb[0] = ggml_type_size(src0->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_nb[i] = input_nb[i - 1] * src0->ne[i - 1]; } aclTensor* acl_input_roll_mul_scale_tensor = ggml_cann_create_tensor( input_roll_mul_scale_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS); aclTensor* acl_input_roll_reshape_tensor = ggml_cann_create_tensor( input_roll_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor, acl_input_roll_mul_scale_tensor); // output void* output_fp32_buffer; if (src0->type == GGML_TYPE_F32) { aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor); aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor); aclnn_add(ctx, acl_src, acl_input_roll_mul_scale_tensor, acl_dst); // TODO: ne0 != n_dims in mode2 } else if (src0->type == GGML_TYPE_F16) { size_t input_fp32_nb[GGML_MAX_DIMS]; input_fp32_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1]; } ggml_cann_pool_alloc fp32_allocator1( ctx.pool(), ggml_nelements(dst) * sizeof(float)); void* input_fp32_buffer1 = fp32_allocator1.get(); aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor( input_fp32_buffer1, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator2( ctx.pool(), ggml_nelements(dst) * sizeof(float)); void* input_fp32_buffer2 = fp32_allocator2.get(); aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor( input_fp32_buffer2, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator( ctx.pool(), ggml_nelements(dst) * sizeof(float)); output_fp32_buffer = fp32_allocator.get(); aclTensor* output_fp32_tensor = ggml_cann_create_tensor( output_fp32_buffer, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1); aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor, input_fp32_tensor2); aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2, output_fp32_tensor); aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16); ggml_cann_release_resources(ctx, input_fp32_tensor1, input_fp32_tensor2, output_fp32_tensor, acl_sin_reshape_tensor, acl_minus_one_tensor, acl_input_roll_mul_scale_tensor, acl_input_roll_reshape_tensor, acl_src); } return; #endif // ggml_mode = 0 --> aclnn_model = 1 int64_t acl_mode = mode == 0 ? 1 : mode; switch (src0->type) { case GGML_TYPE_F32: { GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src, acl_cos_reshape_tensor, acl_sin_reshape_tensor, acl_mode, acl_dst); break; } case GGML_TYPE_F16: { ggml_cann_pool_alloc src_trans_allocator( ctx.pool(), ggml_nelements(src0) * sizeof(float)); void* src_trans_buffer = src_trans_allocator.get(); ggml_cann_pool_alloc dst_trans_allocator( ctx.pool(), ggml_nelements(dst) * sizeof(float)); void* dst_trans_buffer = dst_trans_allocator.get(); size_t src_trans_nb[GGML_MAX_DIMS]; src_trans_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1]; } aclTensor* acl_src_trans_tensor = ggml_cann_create_tensor( src_trans_buffer, ACL_FLOAT, sizeof(float), src0->ne, src_trans_nb, GGML_MAX_DIMS); aclTensor* acl_dst_trans_tensor = ggml_cann_create_tensor( dst_trans_buffer, ACL_FLOAT, sizeof(float), dst->ne, src_trans_nb, GGML_MAX_DIMS); aclnn_cast(ctx, acl_src, acl_src_trans_tensor, ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_trans_tensor, acl_cos_reshape_tensor, acl_sin_reshape_tensor, acl_mode, acl_dst_trans_tensor); aclnn_cast(ctx, acl_dst_trans_tensor, acl_dst, ACL_FLOAT16); ggml_cann_release_resources(ctx, acl_src_trans_tensor, acl_dst_trans_tensor); break; } default: GGML_ABORT("Unsupported tensor type for GGML_OP_ROPE"); break; } ggml_cann_release_resources(ctx, acl_cos_reshape_tensor, acl_sin_reshape_tensor, acl_src, acl_dst); } void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor * src0 = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst->ne, dst->nb, 3); GGML_CANN_CALL_ACLNN_OP(ctx, ArgMax, acl_src, 3, false, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst); } void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor * src0 = dst->src[0]; ggml_tensor * src1 = dst->src[1]; // stride int64_t s0 = ((const int32_t*)(dst->op_params))[0]; aclTensor* acl_input = ggml_cann_create_tensor(src1, src1->ne, src1->nb, 3, ACL_FORMAT_NCL); aclTensor* acl_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3, ACL_FORMAT_NCL); aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst->ne, dst->nb, 3, ACL_FORMAT_NCL); int64_t strideVal[1]; strideVal[0] = s0; aclIntArray *stride = aclCreateIntArray(strideVal, 1); int64_t paddingVal[] = {0}; aclIntArray *padding = aclCreateIntArray(paddingVal, 1); int64_t dilationVal[] = {1}; aclIntArray *dilation = aclCreateIntArray(dilationVal, 1); int8_t cubeMathType = 0; #ifdef ASCEND_310P cubeMathType = 1; #endif GGML_CANN_CALL_ACLNN_OP(ctx, Convolution, acl_input, acl_weight, nullptr, stride, padding, dilation, true, padding, 1, acl_dst, cubeMathType); ggml_cann_release_resources(ctx, acl_weight, acl_dst, stride, padding, dilation); } void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor * src0 = dst->src[0]; aclTensor* acl_input = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float alphaValue = 1.0f; aclScalar* alpha = nullptr; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, Elu, acl_input, alpha, alpha, alpha, acl_dst); ggml_cann_release_resources(ctx, acl_input, acl_dst, alpha); } void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor * src0 = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int64_t reduceDimValue[] = {3}; aclIntArray* reduceDim = aclCreateIntArray(reduceDimValue, 1); bool keepDim = true; GGML_CANN_CALL_ACLNN_OP(ctx, Mean, acl_src, reduceDim, keepDim, ACL_FLOAT, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst, reduceDim); } void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor * src0 = dst->src[0]; int32_t *opts = (int32_t *) dst->op_params; int64_t paddingsArray[2] = {opts[0], opts[1]}; aclIntArray* paddings = aclCreateIntArray(paddingsArray, 2); for (int64_t i = 0; i < src0->ne[3]; i++) { aclTensor* acl_src = ggml_cann_create_tensor( (char*)src0->data + i * src0->ne[3], ggml_cann_type_mapping(src0->type), ggml_element_size(src0), src0->ne, src0->nb, 3); aclTensor* acl_dst = ggml_cann_create_tensor( (char*)dst->data + i * src0->ne[3], ggml_cann_type_mapping(dst->type), ggml_element_size(dst), dst->ne, dst->nb, 3); GGML_CANN_CALL_ACLNN_OP(ctx, ReflectionPad1d, acl_src, paddings, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst); } ggml_cann_release_resources(ctx, paddings); } void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor * src0 = dst->src[0]; ggml_tensor * src1 = dst->src[1]; aclTensor* acl_self = ggml_cann_create_tensor(src0); aclTensor* acl_other = ggml_cann_create_tensor(src1); GGML_CANN_CALL_ACLNN_OP(ctx, InplaceEqTensor, acl_self, acl_other); ggml_cann_sum(ctx, dst); ggml_cann_release_resources(ctx, acl_self, acl_other); } void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor * src0 = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float alphaValue = 0.0f; aclScalar* alpha = nullptr; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, GtScalar, acl_src, alpha, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst, alpha); } /** * @brief Performs expert-specific matrix multiplication (MoE) with * floating-point precision using the CANN backend. * * This function executes a matrix multiplication operation tailored for * Mixture of Experts (MoE) models, where the input tensor is multiplied * with expert-specific weight matrices. It uses the CANN backend for * efficient computation and stores the result in the destination tensor `dst`. * The operation may leverage identity-based optimizations or routing masks * as part of sparse expert selection. * * @param ctx The context for executing CANN backend operations. * @param dst The destination tensor where the MoE multiplication result * will be stored. * * @note This function assumes floating-point data types and is designed for * MoE architectures, possibly involving sparse expert routing. */ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { //dst [M, K, N, 1] ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] -> [D, M, K, 1] ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1] ggml_tensor * ids = dst->src[2]; //ids [K, N] GGML_ASSERT(src0->ne[3] == 1); GGML_ASSERT(src1->ne[3] == 1); GGML_ASSERT(dst->ne[3] == 1); int64_t batch = src1->ne[2]; GGML_ASSERT(batch == ids->ne[1]); ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0)); void* export_ptr = export_allocator.get(); for (int64_t i = 0; i < batch; i++) { aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]); aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3); int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]}; size_t select_export_nb[3]; select_export_nb[0] = src0->nb[0]; for (int k = 1;k < 3; k++) { select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1]; } aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3); GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export); int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]}; size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]}; aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3); int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]}; size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]}; aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]); int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]}; size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]}; aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]); GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2); ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose); } } /** * @brief Performs expert-specific matrix multiplication (MoE) with * quantized precision using the CANN backend. * * This function executes a matrix multiplication operation tailored for * Mixture of Experts (MoE) models, where the input tensor is multiplied * with expert-specific quantized weight matrices. It leverages the CANN * backend to perform efficient low-precision computations and stores the * quantized result in the destination tensor `dst`. * * Quantization techniques reduce memory footprint and improve performance * by using lower-bit representations (e.g., int8) instead of floating-point. * This function is designed to work with such formats and may incorporate * optimizations like identity-based fast paths or routing masks for sparse * expert selection. * * @param ctx The context for executing CANN backend operations. * @param dst The destination tensor where the quantized MoE multiplication result * will be stored. * * @note This function assumes quantized data types and is designed for * MoE architectures with potential sparse expert routing. */ static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: Use aclnnGroupedMatMul //dst [M, K, N, 1] ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 ggml_tensor * ids = dst->src[2]; //ids [K, N] GGML_TENSOR_BINARY_OP_LOCALS // copy index from npu to cpu int64_t n_as = ne02; // A int64_t n_ids = ids->ne[0]; // K std::vector ids_host(ggml_nbytes(ids)); ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids), ACL_MEMCPY_DEVICE_TO_HOST); ACL_CHECK(aclrtSynchronizeStream(ctx.stream())); char * src0_original = (char *) src0->data; char * src1_original = (char *) src1->data; char * dst_original = (char *) dst->data; ggml_tensor src0_row = *src0; ggml_tensor src1_row = *src1; ggml_tensor dst_row = *dst; const enum ggml_type type = dst->src[0]->type; float weight_elem_size; if (type == GGML_TYPE_Q4_0) { weight_elem_size = float(sizeof(uint8_t)) / 2; } else if (type == GGML_TYPE_Q8_0) { weight_elem_size = float(sizeof(uint8_t)); } else { GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 "); } // src0_row [D, M, 1, 1] weight without permute src0_row.ne[2] = 1; src0_row.ne[3] = 1; src0_row.nb[0] = weight_elem_size; src0_row.nb[1] = weight_elem_size * ne00; src0_row.nb[2] = weight_elem_size * ne00; src0_row.nb[3] = weight_elem_size * ne00; size_t weight_stride = ne00 * ne01 * weight_elem_size; size_t weight_size = weight_stride * ne02 * ne03; // scale [D, M, 1, 1] -> scale && permute size_t scale_elem_size = sizeof(uint16_t); size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size; // src1_row [D, 1, 1, 1] -> input src1_row.ne[1] = 1; src1_row.ne[2] = 1; src1_row.ne[3] = 1; src1_row.nb[2] = nb11; src1_row.nb[3] = nb11; // dst_row [M, 1, 1, 1] -> out dst_row.ne[1] = 1; dst_row.ne[2] = 1; dst_row.ne[3] = 1; dst_row.nb[2] = nb1; dst_row.nb[3] = nb1; //create weight for one row ggml_cann_pool_alloc weight_allocator(ctx.pool()); void* weight_buffer = weight_allocator.alloc(nb02); for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { for (int64_t id = 0; id < n_ids; id++) { // expert index int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); GGML_ASSERT(i02 >= 0 && i02 < n_as); // If B = 1 (broadcast), always use 0; otherwise, use id. int64_t i11 = (ne11 == 1 ? 0 : id); int64_t i12 = iid1; int64_t i1 = id; int64_t i2 = i12; void* src0_tmp_ptr = src0_original + i02*weight_stride; void* scale_tmp_ptr = src0_original + weight_size + i02*scale_stride; void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; // mem cpy ggml_cann_async_memcpy(ctx, weight_buffer, src0_tmp_ptr, weight_stride, ACL_MEMCPY_DEVICE_TO_DEVICE); void* scale_buffer = (char*)weight_buffer + weight_stride; ggml_cann_async_memcpy(ctx, scale_buffer, scale_tmp_ptr, scale_stride, ACL_MEMCPY_DEVICE_TO_DEVICE); src0_row.data = weight_buffer; src1_row.data = src1_tmp_ptr; dst_row.data = dst_tmp_ptr; dst_row.src[0] = &src0_row; dst_row.src[1] = &src1_row; ggml_cann_mul_mat(ctx, &dst_row); } } return; } void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const enum ggml_type type = dst->src[0]->type; switch (type) { case GGML_TYPE_F32: case GGML_TYPE_F16: ggml_cann_mul_mat_id_fp(ctx, dst); break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: ggml_cann_mul_mat_id_quant(ctx, dst); break; default: GGML_ABORT("Unsupported type for mul_mat_id"); break; } } void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ggml_tensor* src0 = dst->src[0]; // q, fp32 | B, N, S, D (uncont) -> B, S, N, D (cont) ggml_tensor* src1 = dst->src[1]; // k, fp16 | B, N, S, D (uncont) -> B, S, N, D (cont) ggml_tensor* src2 = dst->src[2]; // v, fp16 | B, N, S, D (uncont) -> B, S, N, D (cont) ggml_tensor* src3 = dst->src[3]; // mask, fp16 // B, N, S, D (uncont) -> B, S, N, D (cont) int64_t src0_bsnd_ne[GGML_MAX_DIMS]; memcpy(src0_bsnd_ne, src0->ne, GGML_MAX_DIMS * sizeof(int64_t)); size_t src0_bsnd_nb[GGML_MAX_DIMS]; memcpy(src0_bsnd_nb, src0->nb, GGML_MAX_DIMS * sizeof(size_t)); int64_t src1_bsnd_ne[GGML_MAX_DIMS]; memcpy(src1_bsnd_ne, src1->ne, GGML_MAX_DIMS * sizeof(int64_t)); size_t src1_bsnd_nb[GGML_MAX_DIMS]; memcpy(src1_bsnd_nb, src1->nb, GGML_MAX_DIMS * sizeof(size_t)); int64_t src2_bsnd_ne[GGML_MAX_DIMS]; memcpy(src2_bsnd_ne, src2->ne, GGML_MAX_DIMS * sizeof(int64_t)); size_t src2_bsnd_nb[GGML_MAX_DIMS]; memcpy(src2_bsnd_nb, src2->nb, GGML_MAX_DIMS * sizeof(size_t)); auto transpose12 = [](int64_t* ne, size_t* nb) { int64_t ne_tmp = ne[1]; size_t nb_tmp = nb[1]; ne[1] = ne[2]; nb[1] = nb[2]; ne[2] = ne_tmp; nb[2] = nb_tmp; }; transpose12(src0_bsnd_ne, src0_bsnd_nb); transpose12(src1_bsnd_ne, src1_bsnd_nb); transpose12(src2_bsnd_ne, src2_bsnd_nb); float maxBias = 0.0f; float scaleValue = 1.0f; float logitSoftcap = 0.0f; memcpy(&scaleValue, (float*)dst->op_params + 0, sizeof(float)); memcpy(&maxBias, (float*)dst->op_params + 1, sizeof(float)); memcpy(&logitSoftcap, (float*)dst->op_params + 2, sizeof(float)); if(logitSoftcap == 0.0f){ size_t faElemSize = sizeof(uint16_t); auto faDataType = ACL_FLOAT16; //ACL_BF16; aclTensor* acl_src0_f16_tensor = nullptr; aclTensor* acl_src1_f16_tensor = nullptr; aclTensor* acl_src2_f16_tensor = nullptr; aclTensor* acl_dst_f16_tensor = nullptr; // Step 1: cast the src0 (Query) to fp16 if needed ggml_cann_pool_alloc src0_f16_allocator(ctx.pool()); void* src0_f16_buffer = nullptr; if(ggml_cann_type_mapping(src0->type) != faDataType){ aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0, src0_bsnd_ne, src0_bsnd_nb, GGML_MAX_DIMS); src0_f16_buffer = src0_f16_allocator.alloc( ggml_nelements(src0) * faElemSize); int64_t* src0_f16_ne = src0_bsnd_ne; size_t src0_f16_nb[GGML_MAX_DIMS]; src0_f16_nb[0] = sizeof(uint16_t); for(int i = 1; i < GGML_MAX_DIMS; ++i){ src0_f16_nb[i] = src0_f16_nb[i - 1] * src0_f16_ne[i - 1]; } acl_src0_f16_tensor = ggml_cann_create_tensor( src0_f16_buffer, faDataType, faElemSize, src0_f16_ne, src0_f16_nb, GGML_MAX_DIMS ); aclnn_cast(ctx, acl_src0_f32_tensor, acl_src0_f16_tensor, faDataType); ggml_cann_release_resources(ctx, acl_src0_f32_tensor); }else{ acl_src0_f16_tensor = ggml_cann_create_tensor(src0, src0_bsnd_ne, src0_bsnd_nb, GGML_MAX_DIMS); } // Step 2: create the acl tensors for src1 (Key), src2 (Value), // and the direct output from FusedInferAttention acl_src1_f16_tensor = ggml_cann_create_tensor(src1, src1_bsnd_ne, src1_bsnd_nb, GGML_MAX_DIMS); acl_src2_f16_tensor = ggml_cann_create_tensor(src2, src2_bsnd_ne, src2_bsnd_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc out_f16_allocator(ctx.pool()); void* out_f16_buffer = out_f16_allocator.alloc( ggml_nelements(dst) * faElemSize); int64_t* out_f16_ne = src0_bsnd_ne; size_t out_f16_nb[GGML_MAX_DIMS]; out_f16_nb[0] = faElemSize; for(int i = 1; i < GGML_MAX_DIMS; ++i){ out_f16_nb[i] = out_f16_nb[i - 1] * out_f16_ne[i - 1]; } acl_dst_f16_tensor = ggml_cann_create_tensor( out_f16_buffer, faDataType, faElemSize, out_f16_ne, out_f16_nb, GGML_MAX_DIMS ); // Step 3: create the PSEShift tensor if needed // this tensor is considered as mask (f16) in the llama.cpp aclTensor* bcast_pse_tensor = nullptr; ggml_cann_pool_alloc bcast_pse_allocator(ctx.pool()); if(src3 != nullptr){ // Construct the truncated pse tensor (common for prefill/decode) int64_t trunc_pse_ne[GGML_MAX_DIMS] = { src3->ne[0], // D src0->ne[1], // S (number of Q tokens) src3->ne[2], // mask N src3->ne[3] // B }; size_t* trunc_pse_nb = src3->nb; aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor( src3->data, ACL_FLOAT16, sizeof(uint16_t), trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS ); int64_t bcast_pse_ne[GGML_MAX_DIMS]; size_t bcast_pse_nb[GGML_MAX_DIMS]; bcast_pse_ne[0] = src3->ne[0]; // D bcast_pse_ne[1] = src0->ne[1]; // S bcast_pse_ne[2] = src0->ne[2]; // N (num_heads) bcast_pse_ne[3] = src3->ne[3]; // B if (maxBias == 0.0f) { // When maxBias == 0.0f, use nb = 0 reduce once repeat (Qwen2) // Construct the bcast tensor (simulate repeat on the head dimension using stride=0) bcast_pse_nb[0] = sizeof(uint16_t); bcast_pse_nb[1] = bcast_pse_nb[0] * bcast_pse_ne[0]; bcast_pse_nb[2] = 0; // <---- the head dimension shares the same data bcast_pse_nb[3] = src3->nb[3]; bcast_pse_tensor = ggml_cann_create_tensor( src3->data, ACL_FLOAT16, sizeof(uint16_t), bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS ); ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor); } else { bcast_pse_nb[0] = sizeof(uint16_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1]; } void* bcast_pse_buffer = bcast_pse_allocator.alloc( ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t) ); bcast_pse_tensor = ggml_cann_create_tensor( bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t), bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS ); int64_t repeats[] = {1, src0->ne[2], 1, 1}; aclnn_repeat(ctx, acl_mask_f16_trunc_tensor, bcast_pse_tensor, repeats); // alibi // Compute the slope if needed. Derived from ggml_cann_softmax(). const int64_t n_heads = src0->ne[2]; ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(uint16_t)); void* slope_buffer = slope_allocator.get(); aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias, GGML_TYPE_F16); int64_t slope_ne[] = {1, 1, n_heads, 1}; size_t slope_nb[GGML_MAX_DIMS]; slope_nb[0] = sizeof(uint16_t); for(int i = 1;ine[2]; // N int64_t numKeyValueHeads = src1->ne[2]; // double scaleValue = 1 / sqrt(src0->ne[0]); // 1/sqrt(d) int64_t preTokens = 65535; int64_t nextTokens = 65535; char layout[5] = {'B', 'S', 'N', 'D', 0}; int64_t sparseMode = 0; int64_t innerPrecise = (src0->ne[1] == 1) ? 0 : 2; int64_t blockSize = 0; int64_t antiquantMode = 0; bool softmaxLseFlag = false; int64_t keyAntiquantMode = 0; int64_t valueAntiquantMode = 0; // Step 5: launch the FusedInferAttentionScoreV2 kernel. // Refer to https://gitee.com/ascend/cann-ops-adv/blob/master/docs/FusedInferAttentionScoreV2.md GGML_CANN_CALL_ACLNN_OP(ctx, FusedInferAttentionScoreV2, acl_q_tensor, acl_k_tensor_list, acl_v_tensor_list, // q, k, v bcast_pse_tensor, nullptr, // pse, mask nullptr, nullptr, // actSeqLen, actSeqLenkv nullptr, nullptr, // deqScale1, quantScale1 nullptr, nullptr, nullptr, // deqScale2, quantScale2, quantOffset2 nullptr, nullptr, // antiquantScale, antiquantOffset nullptr, // blockTable nullptr, nullptr, // qPadSize, kvPadSize nullptr, nullptr, // kAntiquantScale, kAntiQuantOffset nullptr, nullptr, // vAntiquantScale, vAntiQuantOffset nullptr, nullptr, nullptr, // kSharedPrefix, vSharedPrefix, actSharedLen numHeads, scaleValue, // heads, scaleValue preTokens, nextTokens, // preTokens, nextTokens layout, // inputLayout numKeyValueHeads, // numKVHeads sparseMode, innerPrecise, // sparseMode, innerPrecise blockSize, antiquantMode, // blockSize, antiquantMode softmaxLseFlag, // softmaxLseFlag keyAntiquantMode, valueAntiquantMode, // keyAntiqMode, valueAntiqMode acl_dst_f16_tensor, // attentionOut nullptr // softmaxLse ); // Step 6: post-processing, permute and cast to f32 aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst); // TODO: when dst is fp16, don't need cast aclnn_cast(ctx, acl_dst_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type)); ggml_cann_release_resources(ctx, acl_src0_f16_tensor, acl_src1_f16_tensor, acl_src2_f16_tensor, acl_dst_f16_tensor, acl_dst_tensor); if(src3 != nullptr){ ggml_cann_release_resources(ctx, bcast_pse_tensor); } }else{ GGML_ABORT("Function is not implemented."); } }