/** * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef CANN_ACLNN_OPS #define CANN_ACLNN_OPS #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acl_tensor.h" #include "common.h" /** * @brief Repeats a ggml tensor along each dimension to match the dimensions * of another tensor. * * @details This function repeats the elements of a source ggml tensor along * each dimension to create a destination tensor with the specified * dimensions. The operation is performed using the ACL backend and * executed asynchronously on the device. * * @param ctx The CANN context used for operations. * @param dst The ggml tensor representing the destination, which op is * GGML_OP_REPEAT and specifies the desired dimensions. */ void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies the Leaky ReLU activation function to a tensor using the CANN * backend. * * @details This function computes the Leaky ReLU activation for each element of * the input tensor. The Leaky ReLU function allows a small gradient * when the unit is not active (i.e., when the input is negative). The * Leaky ReLU function is defined as: * \f[ * \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0, * src) * \f] * `negativeSlope` is in dst->params. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the result of the Leaky ReLU * activation is stored, which op is `GGML_OP_LEAKY_RELU` */ void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Concatenates multiple tensors along a specified dimension using the * CANN backend. * * @param ctx The CANN context used for operations. * @param tensorList A pointer to the list of tensors to be concatenated. * @param dst The destination tensor where the result of the * concatenation is stored. dst->op is `GGML_OP_CONCAT`. * @param concat_dim The dimension along which the tensors are concatenated. * * @attention tensorList length should be 2 and the dimension using for concat * default to 1. */ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Generates a sequence of evenly spaced values within a specified * interval for a ggml tensor using the CANN backend. * * @details This function creates a sequence of numbers over a specified i * nterval, starting from `start`, ending before `stop`, and * incrementing by `step`. The sequence is stored in the destination * tensor `dst`. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the generated sequence will be stored. * `start`, 'stop' and 'step' are in dst->op_params and dst->op is * `GGML_OP_ARANGE`. */ void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies a clamp operation to the elements of a ggml tensor using the * CANN backend. * * @details This function clamps the elements of the input tensor `src` to a * specified range defined by `min` and `max` values. The result is * stored in the destination tensor `dst`. The operation is defined as: * \f[ * y = \max(\min(x, max\_value), min\_value) * \f] * where `x` is an element of the input tensor, and `y` is the * corresponding element in the output tensor. * @param ctx The CANN context used for operations. * @param dst The destination tensor where the clamped values will be stored. * dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params. */ void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Scales the elements of a ggml tensor by a constant factor using the * CANN backend. * * @details This function multiplies each element of the input tensor `src` by * a scaling factor `scale`, storing the result in the destination * tensor `dst`. The operation is defined as: * \f[ * dst = src \times scale * \f] * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the scaled values will be stored. * dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params. */ void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Sorts the elements of a ggml tensor and returns the indices that * would sort the tensor using the CANN backend. * * @details This function performs an argsort operation on the input tensor * `src`. It sorts the elements of `src` in either ascending or * descending order, depending on the `GGML_SORT_ORDER_DESC`, * and returns the indices that would sort the original tensor. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the sorted indices will be stored. * dst->op is `GGML_OP_ARGSORT`. */ void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the Layer Normalization for a ggml tensor using the CANN * backend. * * @details This function applies the Layer Normalization operation on the * input tensor `src` and stores the result in the destination tensor * `dst`. Layer Normalization normalizes the features at each sample in * a mini-batch independently. It is commonly used in neural networks * to normalize the activations of a layer by adjusting and scaling * the outputs. * The operation is defined as: * \f[ * \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} * \f] * `Var` defaults dst->ne[0]. `eps` is in dst->params. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the normalized values will be stored. * @attention `Var` defaults to dst->ne[0]. */ void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the Group Normalization for a ggml tensor using the CANN * backend. * * @brief This function applies the Group Normalization operation on the input * tensor `src` and stores the result in the destination tensor `dst`. * Group Normalization divides the channels into groups and normalizes * the features within each group across spatial locations. * It is commonly used in convolutional neural networks to improve * training stability and performance. * The operation is defined as: * \f[ * \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} * \f] * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the normalized values will be stored. * `n_groups` is in dst->params, which split C channel to `n_groups`. * dst->op is `GGML_OP_GROUP_NORM`. * * @attention eps defaults to 1e-6f. */ void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the accumulation of tensors using the CANN backend. * * @details This function performs an accumulation operation on two tensors. * Depending on the `inplace` flag, it either updates the destination * tensor `dst` in place by adding `alpha * src1` to it, or it creates * a new tensor as the result of `src0 + alpha * src1` and stores it in * `dst`. * The operation is defined as: * \f[ * dst = src0 + alpha \times src1 * \f] * if `inplace` is `true`, `src0` is equal to 'dst'. * @param ctx The CANN context used for operations. * @param dst The destination tensor where the accumulated values will be stored. * `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`. */ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the sum of elements along the last dimension of a ggml tensor * using the CANN backend. * * @details This function performs a reduction sum operation along the last * dimension of the input tensor `src`. The result of the sum is stored * in the destination tensor `dst`. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the reduced values will be stored。 * dst->op is `GGML_OP_SUM_ROWS`. * * @attention `reduce_dims` defaults to 3, which means the last dimension. */ void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the sum of elements in a ggml tensor. * * @details This function performs a reduction sum operation along the last * dimension of the input tensor `src`. The result of the sum is stored * in the destination tensor `dst`. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the reduced values will be stored。 * */ void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Upsamples a ggml tensor using nearest neighbor interpolation using * the CANN backend. * * @details This function performs upsampling of the input tensor `src` using * nearest neighbor interpolation. The upsampling is applied to the * height and width dimensions (last two dimensions) of the tensor. The * result is stored in the destination tensor `dst`, which must have * the appropriate dimensions for the upsampled output. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the upsampled values will be stored. * dst->op is `GGML_OP_UPSCALE`. */ void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Pads a ggml tensor to match the dimensions of the destination tensor * using the CANN backend. * * @details This function pads the input tensor `src` so that it matches the * dimensions of the destination tensor `dst`. The amount of padding * is calculated based on the difference in sizes between `src` and * `dst` along each dimension. The padded tensor is stored in `dst`. * * @param ctx The CANN context used for operations. * @param dst The destination tensor, which specifies the target dimensions for * padding. dst->op is `GGML_OP_PAD`. */ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Executes a 2D pooling operation on a ggml tensor using the CANN * backend. * * @details This function dispatches the execution of a 2D pooling operation on * the input tensor `dst`. The type of pooling (average or max) is * determined by the `op` parameter, which is read from the operation * parameters of `dst`. The function supports average pooling * (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an * invalid operation is encountered, the function asserts a failure. * * @param ctx The CANN context used for operations. * @param dst The destination tensor on which the pooling operation is to be * performed. dst->op is `GGML_OP_POOL_2D`. */ void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Duplicates a ggml tensor using the CANN backend. * * @details This function duplicates the contents of the source tensor `src` to * the destination tensor `dst`. The function supports various tensor * types and configurations, including handling of extra data, type * conversions, and special cases for contiguous and non-contiguous * tensors. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the duplicated data will be stored. * dst->op is `GGML_OP_DUP` * * @attention Only support Fp16/FP32. Not support when src and dst have * different shape and dst is no-contiguous. * @note: This func need to simplify. */ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor * using the CANN backend. * * @details This function applies RMS normalization to the input tensor `src` * and stores the result in the destination tensor `dst`. RMS * normalization involves computing the root mean square of the input * tensor along a specified dimension and then dividing each element of * the tensor by this value, adjusted by a small epsilon value to * prevent division by zero. * The operation is defined as: * \f[ * \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i, * \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s} * \f] * `eps` is in dst->op_params. * @param ctx The CANN context used for operations. * @param dst The destination tensor where the normalized values will be stored. * dst->op is `GGML_OP_RMS_NORM`. */ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies a diagonal mask to the tensor with a specified value. * * @details This function creates a mask tensor filled with ones, then applies * an upper triangular and lower triangular operation to it based on * the number of past elements specified. Afterward, it adds the masked * tensor to the destination tensor in-place. * * @param ctx The backend CANN context used for operations. * @param dst The destination tensor where the result will be stored. dst->op is * `GGML_OP_DIAG_MASK` * @param value The value to use for masking. */ void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value); /** * @brief Performs an image-to-column transformation on the input tensor. * * @details This function takes an input tensor and applies an image-to-column * operation, converting spatial dimensions into column-like * structures suitable for convolutional operations. It supports both * half-precision (F16) and single-precision (F32) floating-point data * types. * * @param ctx The backend CANN context for executing operations. * @param dst The destination tensor that stores the result of the operation. * dst->op is `GGML_OP_IM2COL`. */ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes time step embeddings using sine and cosine functions. * * @details This function calculates time step embeddings by applying sine and * cosine transformations to a given input tensor, which is typically * used in temporal models like diffusion models or transformers to * encode time information effectively. * * @param ctx The backend CANN context for executing operations. * @param dst The destination tensor where the result of the embedding operation * will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`. */ void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst); // @see ggml_cann_dup. void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the softmax activation with optional masking. * * @details This function computes the softmax activation over the input tensor, * optionally applying a mask and scaling factor. It supports both FP16 * and FP32 data types and can handle masking by broadcasting the mask * across rows if necessary. * The function performs the following steps: * 1. Multiplies the input tensor by a scale factor. * 2. Optionally casts the mask tensor to FP32 if it is in FP16 format. * 3. Broadcasts the mask tensor if its dimensions do not match the * input tensor's dimensions. * 4. Adds the mask to the scaled input tensor. * 5. Applies the softmax activation function along the specified * dimension. * * @param ctx The backend CANN context for executing operations. * @param dst The destination tensor where the result will be stored. dst->op is * `GGML_OP_SOFTMAX`. */ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Extracts specific rows from a tensor based on indices. * * @details This function retrieves rows from a source tensor src0 according to * the indices provided in another tensor src1 and stores the result in * a destination tensor (\p dst). * * @param ctx The backend CANN context for executing operations. * @param dst The destination tensor where the extracted rows will be stored. */ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Writes specific rows into a tensor at positions specified by indices. * * @details This function copies rows from a source tensor into a destination * tensor (\p dst) at the positions indicated by the indices in another * tensor. * * @param ctx The backend CANN context for executing operations. * @param dst The destination tensor where the specified rows will be updated. */ void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Executes matrix multiplication for the given tensor. * * @details This function performs matrix multiplication on the source tensors * associated with the destination tensor. It supports matrix * multiplication F32, F16, and Q8_0. * * @param ctx The backend CANN context for executing operations. * @param dst The destination tensor for storing the result of the matrix * multiplication. dst->op is `GGML_OP_MUL_MAT`. */ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies Rotary Positional Embedding (RoPE) to the input tensor. * * @details This function implements the RoPE mechanism, which is a method to * encode positional information into sequence data, particularly * useful in transformer models. It supports both F32 and F16 data * types. * * @param ctx The backend CANN context for executing operations. * @param dst The destination tensor where the RoPE-transformed data will be * stored. dst->op is `GGML_OP_ROPE`. * * @note The function currently does not support cases where the n_dims is less * than the input tensor's first dimension. * @note The function currently does not support cases where the freq_factors is * not NULL. * @note The function currently does not support cases where the ext_factor is * not equal 0. * @note The function currently does not support cases where the freq_scale is * not equal 1. */ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the index of the maximum value along the specified dimension * of a ggml tensor using the CANN backend. * * @details This function performs an argmax operation on the input tensor. * It finds the index of the maximum value along the specified axis * and stores these indices in the destination tensor `dst`. The * operation is executed using the CANN backend for optimized performance. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the indices of the maximum values will * be stored. dst->op is `GGML_OP_ARGMAX`. */ void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Adds two tensors element-wise and stores the result in a destination * tensor. * * This function performs the operation: * \f[ * dst = acl\_src0 + alpha \times acl\_src1 * \f] * where alpha is a scalar value and defaults to 1.0f. * * @param ctx The context for the CANN backend operations. * @param acl_src0 The first source tensor. * @param acl_src1 The second source tensor. * @param acl_dst The destination tensor where the result will be stored. */ void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0, aclTensor* acl_src1, aclTensor* acl_dst = nullptr); /** * @brief Sub two tensors element-wise and stores the result in a destination * tensor. * * This function performs the operation: * \f[ * dst = acl\_src0 - alpha \times acl\_src1 * \f] * where alpha is a scalar value and defaults to 1.0f. * * @param ctx The context for the CANN backend operations. * @param acl_src0 The first source tensor. * @param acl_src1 The second source tensor. * @param acl_dst The destination tensor where the result will be stored. */ void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0, aclTensor* acl_src1, aclTensor* acl_dst = nullptr); /** * @brief Performs element-wise multiplication of two tensors and stores the * result in a destination tensor. * * This function performs element-wise multiplication of the tensors `acl_src` * and `acl_other` and stores the result in the destination tensor `acl_dst`. * The operation is defined as: * \f[ * \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The first tensor for element-wise multiplication. * @param acl_other The second tensor for element-wise multiplication. * @param acl_dst The destination tensor where the result will be stored. */ void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_other, aclTensor* acl_dst = nullptr); /** * @brief Matrix division, optionally in-place. * * This function division each element of the source tensor `acl_src` by the * tensor `acl_other` and stores the result in the destination tensor `acl_dst`. * If `inplace` is true, `acl_dst` will not be used and the operation is * performed in-place on `acl_src`. The operation is defined as: \f[ * \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src Numerator tensor.. * @param acl_other Denominator tensor. * @param acl_dst The destination tensor where the result will be stored if * `inplace` is false. * @param inplace Flag indicating whether to perform the operation in-place on * `acl_src`. */ void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_other, aclTensor* acl_dst = nullptr); /** * @brief Applies element-wise cosine function to the elements of a tensor. * * This function computes the cosine of each element in the source tensor * `acl_src` and stores the result in the destination tensor `acl_dst`. The * operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src * }_i\right) \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor on which the cosine function will be * applied. * @param acl_dst The destination tensor where the cosine results will be * stored. */ void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst); /** * @brief Applies element-wise sine function to the elements of a tensor. * * This function computes the sine of each element in the source tensor `acl_src` * and stores the result in the destination tensor `acl_dst`. * The operation is defined as: * \f[ * \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right) * \f] * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor on which the sine function will be applied. * @param acl_dst The destination tensor where the sine results will be stored. */ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst); /** * @brief Prepares broadcast-compatible ACL tensors for two input tensors and one * output tensor. * * This function checks whether broadcasting is needed between `src0` and `src1`. * If broadcasting is required, it calculates the proper shapes and creates * ACL tensors with broadcast parameters. Otherwise, it directly creates ACL tensors * based on the original tensor shapes. * * @param src0 The first input tensor (reference shape). * @param src1 The second input tensor (possibly broadcasted). * @param dst The destination/output tensor. * @param acl_src0 Output pointer to the created ACL tensor corresponding to src0. * @param acl_src1 Output pointer to the created ACL tensor corresponding to src1. * @param acl_dst Output pointer to the created ACL tensor corresponding to dst. */ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst); /** * @brief Computes the 1D transposed convolution (deconvolution) of a ggml * tensor using the CANN backend. * * @details This function performs a 1D transposed convolution (also known as * deconvolution) operation on the input tensor. The computed result is stored * in the destination tensor `dst`. The operation is optimized using the CANN * backend for improved performance. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the transposed convolution result * will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`. */ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor * using the CANN backend. * * @details This function performs an element-wise ELU activation on the input * tensor. * The result is written to the destination tensor `dst` in-place. * The ELU function is defined as: * * \text{ELU}(x) = * \begin{cases} * x, & \text{if } x > 0 \\ * \alpha \left( \exp(x) - 1 \right), & \text{if } x \leq 0 * \end{cases} * * where α (alpha) is a hyperparameter, typically set to 1.0. * This operation is optimized using the CANN backend for high-performance * inference or training. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the ELU-activated result will be stored. * dst->op is expected to be `GGML_OP_ELU`. */ void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Computes the mean of a ggml tensor element-wise using the CANN backend. * * @details This function calculates the element-wise mean of the input tensor. * The result is written to the destination tensor `dst`. * The mean is computed by averaging the values across the entire tensor. * * This operation is optimized using the CANN backend for high-performance inference or training. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the mean result will be stored. * dst->op is expected to be `GGML_OP_MEAN`. */ void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies 1D reflect padding to a ggml tensor using the CANN backend. * * @details This function performs 1D reflect padding on the input tensor. * The amount of padding on each side is specified by parameters stored in `dst->op_params`. * The operation reflects the values at the borders of the tensor to generate the padded output. * * This operation is optimized using the CANN backend for high-performance inference or training. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the padded result will be stored. * dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`. */ void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Counts the number of equal elements in two ggml tensors using the CANN backend. * * @details This function performs an element-wise comparison between two input tensors, * and counts the number of positions where the elements are equal. The result is * stored in the destination tensor `dst` as a scalar. * * The operation is optimized using the CANN backend, making it suitable for * high-performance inference or training scenarios. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the result will be stored. * dst->op is expected to be `GGML_OP_COUNT_EQUAL`. */ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies the Step activation function to a ggml tensor using the CANN backend. * * @details This function applies a step function element-wise to the input tensor, where * each element is transformed to 1.0 if it is greater than 0, and 0.0 otherwise. * The result is stored in the destination tensor `dst`. * * This operation is accelerated using the CANN backend to improve runtime performance. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the result will be stored. * dst->op is expected to be `GGML_OP_STEP`. */ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Performs the Flash Attention extended operator using the CANN backend. * * @details This function implements the memory-efficient Flash Attention algorithm * for computing scaled dot-product attention with hardware acceleration. * The result is stored in the destination tensor `dst`. * * This operation is accelerated using the CANN backend to improve runtime performance. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the result will be stored. * dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`. */ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst); /* * @brief A generic wrapper for ACL resources with custom deleter support. */ using any_acl_resource = std::unique_ptr>; /** * @brief Trait structure used to define how to destroy a given ACL resource type. * * @tparam T ACL resource type. */ template struct acl_resource_traits; /** * @brief Specialization for aclTensor, defines how to destroy an aclTensor resource. */ template<> struct acl_resource_traits { static void destroy(void* p) { ACL_CHECK(aclDestroyTensor(static_cast(p))); } }; /** * @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource. */ template<> struct acl_resource_traits { static void destroy(void* p) { ACL_CHECK(aclDestroyIntArray(static_cast(p))); } }; /** * @brief Specialization for aclScalar, defines how to destroy an aclScalar resource. */ template<> struct acl_resource_traits { static void destroy(void* p) { ACL_CHECK(aclDestroyScalar(static_cast(p))); } }; /** * @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource. */ template<> struct acl_resource_traits { static void destroy(void* p) { ACL_CHECK(aclDestroyTensorList(static_cast(p))); } }; /** * @brief Creates a generic ACL resource wrapper with proper destruction logic. * * @tparam T ACL resource type. * @param ptr Raw pointer to ACL resource. * @return any_acl_resource Smart pointer that handles destruction. */ template any_acl_resource make_acl_resource(T* ptr) { return any_acl_resource( static_cast(ptr), [](void* p) { acl_resource_traits::destroy(p); } ); } /** * @brief Registers multiple ACL resources into a vector for lifetime management. * * @tparam Args Variadic list of ACL resource types. * @param vec Target vector to hold ACL resources. * @param args Raw pointers to ACL resources. */ template void register_acl_resources(std::vector& vec, Args*... args) { (vec.emplace_back(make_acl_resource(args)), ...); } /** * @brief Task class that wraps the execution of an aclnn function call. */ class aclnn_task : public cann_task { public: aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr, uint64_t workspace_size, aclOpExecutor * executor, aclrtStream stream) : aclnn_func_(aclnn_func), workspace_addr_(workspace_addr), workspace_size_(workspace_size), executor_(executor), stream_(stream) {} virtual void run_task() override { ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); } private: aclnn_func_t aclnn_func_; void * workspace_addr_; uint64_t workspace_size_; aclOpExecutor * executor_; aclrtStream stream_; }; /** * @brief Task class that releases ACL resources after usage. */ class release_resource_task : public cann_task { public: release_resource_task(std::vector&& resources){ resource_ = std::move(resources); } virtual void run_task() override { resource_.clear(); } private: std::vector resource_; }; /** * @brief Task class for performing asynchronous memory copy operations. */ class async_memcpy_task : public cann_task { public: async_memcpy_task(void* dst, const void* src, size_t size, aclrtMemcpyKind kind, aclrtStream stream) : dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {} virtual void run_task() override { ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); } private: void* dst_; const void* src_; size_t size_; aclrtMemcpyKind kind_; aclrtStream stream_; }; /** * @brief Task class for performing asynchronous memory set operations. */ class async_memset_task : public cann_task { public: async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream) : buffer_(buffer), size_(size), value_(value), stream_(stream) {} virtual void run_task() override { ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); } private: void* buffer_; size_t size_; int32_t value_; aclrtStream stream_; }; /** * @brief Launches an asynchronous task using the memory allocator. * * This macro submit an asynchronous task on the specified stream. * The task uses memory allocated by the allocator. It is guaranteed * that the memory will not be accessed by other tasks until this task * completes, due to the sequential execution order within the same stream. * * @param OP_NAME aclnn operator name. * @param args Additional arguments required by the task. * * @note * Memory from the allocator will be "freed" immediately and can be * reallocated to other pointers. However, it won't be accessed by any * other task before this asynchronous task ends, because all tasks in the * same stream are executed in queue order. */ #define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \ do { \ uint64_t workspaceSize = 0; \ aclOpExecutor * executor; \ void * workspaceAddr = nullptr; \ ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor));\ /* workspace should alloced in main thread to keep malloc order when using vmm. */ \ if (workspaceSize > 0) { \ ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \ workspaceAddr = workspace_allocator.get(); \ } \ if (CTX.async_mode) { \ auto task = \ std::make_unique(aclnn##OP_NAME, workspaceAddr, workspaceSize, \ executor, CTX.stream()); \ CTX.task_queue.submit_task(std::move(task)); \ } else { \ ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream()));\ } \ } while (0) /** * @brief Registers and releases multiple ACL resources, optionally deferring the release * using a task. * * @tparam Args Types of the ACL resources. * @param ctx Backend context which manages task submission and async mode. * @param args Pointers to ACL resources to be released. */ template void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) { std::vector resources; register_acl_resources(resources, std::forward(args)...); if(ctx.async_mode) { auto task = std::make_unique(std::move(resources)); ctx.task_queue.submit_task(std::move(task)); } } /** * @brief Performs an asynchronous memory copy operation, optionally deferred via task submission. * * @param ctx Backend context containing stream and async configuration. * @param dst Destination memory address. * @param src Source memory address. * @param len Size of memory to copy (in bytes). * @param kind Type of memory copy (host-to-device, device-to-host, etc). */ inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst, const void * src, size_t len, aclrtMemcpyKind kind) { if (ctx.async_mode) { auto task = std::make_unique(dst, const_cast(src), len, kind, ctx.stream()); ctx.task_queue.submit_task(std::move(task)); } else { ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx.stream())); } } inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst, const void * src, size_t len, aclrtMemcpyKind kind) { if (ctx->async_mode) { auto task = std::make_unique(dst, const_cast(src), len, kind, ctx->stream()); ctx->task_queue.submit_task(std::move(task)); } else { ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx->stream())); } } /** * @brief Performs an asynchronous memory set operation, optionally deferred via task submission. * * @param ctx Backend context containing stream and async configuration. * @param buffer Memory buffer to be set. * @param size Size of the memory buffer (in bytes). * @param value Value to set in the buffer. */ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, size_t size, int value) { if (ctx.async_mode) { auto task = std::make_unique(buffer, size, value, ctx.stream()); ctx.task_queue.submit_task(std::move(task)); } else { ACL_CHECK(aclrtMemsetAsync(buffer, size, value, size, ctx.stream())); } } /** * @brief Performs sparse expert-based matrix multiplication using the CANN backend. * * @details This function implements a MoE-style batched matrix multiplication, where each input token * is routed to one or more experts, and each expert corresponds to a specific [D, M] weight matrix * in the source tensor `src0`. The routing indices are provided via the `ids` tensor. * * For each token (from `src1`), the function selects the corresponding expert(s) as specified by `ids`, * performs the matrix multiplication with the selected expert's weight submatrix (from `src0`), * and stores the results in `dst`. This operation is optimized and executed on the CANN backend. * * Dimensions: * - src0: [D, M, A, 1], where A is the number of experts * - src1: [D, B, N, 1], where N is batch size and B is the slot count per sample * - ids : [K, N], where K is the number of experts each token is routed to * - dst : [M, K, N, 1], output tensor storing the result of expert × token multiplication * * The function handles two main modes: * - If `ne12 == 1`, a simpler per-token loop is used. * - TODO: If `ne12 > 1`, grouped multiplication and memory copying is used for efficiency. * * @param ctx The CANN context used for operations. * @param dst The destination tensor where the expert-weighted token outputs are stored. * Expected to be of shape [M, K, N, 1]. */ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Check whether a tensor is a weight tensor for matrix multiplication. * * @details Checks whether the given tensor serves as weight parameters in matrix multiplication operations, * typically within neural network layers. The function maintains a static set of canonical weight * naming suffixes from Transformer-based architectures. Uses substring matching to identify weight * tensors even with hierarchical naming patterns. * * @param tensor Pointer to the target ggml_tensor object (const-qualified). */ static bool is_matmul_weight(const ggml_tensor* tensor) { std::string name = ggml_get_name(tensor); static const std::unordered_set weight_suffixes{ "output.weight", "attn_q.weight", "attn_k.weight", "attn_v.weight", "attn_output.weight", "ffn_gate.weight", "ffn_up.weight", "ffn_down.weight" }; for (const auto& suffix : weight_suffixes) { if (name.find(suffix) != std::string::npos) { return true; } } return false; } /** * @brief Applies a element-wise operation to two input tensors using the CANN * backend. * * This templated function takes a binary operator and applies it to two source * tensors * associated with the destination tensor. The function handles broadcasting as * needed. * * @tparam binary_op A callable object (e.g., lambda or function pointer) representing * the binary operation to be performed. It must take three arguments: * (ggml_backend_cann_context&, aclTensor*, aclTensor*, aclTensor*). * * @param ctx The CANN backend context used to manage execution and resources. * @param dst The destination tensor. */ template void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; aclTensor* acl_src0; aclTensor* acl_src1; aclTensor* acl_dst; // Need bcast bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst); binary_op(ctx, acl_src0, acl_src1, acl_dst); ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst); } /** * @brief Applies a unary operation to an input tensor using the CANN backend. * * This templated function applies a unary operator to the source tensor of `dst` * and stores the result in the destination tensor. * * @tparam unary_op A callable with the signature: * void(ggml_backend_cann_context&, aclTensor*, aclTensor*) * where the first aclTensor is the source and the second is the destination. * @param ctx The CANN backend context for managing resources and execution. * @param dst The destination tensor. Its src[0] is treated as the input tensor. */ template void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); unary_op(ctx, acl_src, acl_dst); ggml_cann_release_resources(ctx, acl_src, acl_dst); } /** * @brief Applies a unary operation to a ggml tensor using the CANN backend. * * @details This function applies a unary operation to the input tensor using * a user-provided lambda or callable `unary_op`. The lambda receives the * CANN backend context and two ACL tensors: the source and the destination. * * Internally, this function handles the conversion from GGML tensors to ACL tensors, * calls the provided unary op, and manages resource cleanup. The input is assumed * to be `dst->src[0]`, and the result is written to `dst`. * * This utility simplifies writing unary op wrappers by abstracting tensor preparation. * * @param unary_op A callable that performs the unary operation using CANN ACL APIs. * @param ctx The CANN context for operation execution. * @param dst The destination ggml_tensor where the result will be stored. * The input tensor is assumed to be `dst->src[0]`. * * @see GGML_CANN_CALL_OP_UNARY */ void ggml_cann_op_unary( std::function unary_op, ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Applies a gated (GLU-style) unary operation using the CANN backend. * * @details This function performs a gated activation such as GEGLU or ReGLU. * It supports two input modes: * * 1. **Dual input mode**: `dst->src[0]` and `dst->src[1]` are both valid tensors. * These are used directly as the value and gate tensors. * * 2. **Packed input mode**: Only `dst->src[0]` is valid, and it is assumed to * contain a concatenation of value and gate along the first dimension. This tensor * will be split into two equal halves to form the value and gate inputs. * * The function applies a user-provided unary operation (e.g., GELU) to the value tensor, * then multiplies the result in-place with the gate tensor: * * @code * dst = unary_op(value) * gate; * @endcode * * The `swapped` parameter (from `dst->op_params[1]`) allows flipping the * order of value/gate in the packed input case. * * @param unary_op A callable that performs the unary operation using CANN ACL APIs. * It receives (ctx, acl_value_tensor, acl_output_tensor). * @param ctx The CANN context used for execution. * @param dst The destination ggml_tensor. Source tensors are in `dst->src[0]` and optionally `src[1]`. * * @see GGML_CANN_CALL_OP_UNARY_GATED */ void ggml_cann_op_unary_gated( std::function unary_op, ggml_backend_cann_context& ctx, ggml_tensor* dst); /** * @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary. * * This macro wraps the specified ACLNN unary operator name into a lambda expression, * and passes it to `ggml_cann_op_unary`, which handles the common logic for executing * unary ops in the CANN backend. * * Internally, this macro expands to a lambda like: * @code * [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { * GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); * }; * @endcode * * This lambda is then passed to `ggml_cann_op_unary`, which applies the operation. * * @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP. * * @see ggml_cann_op_unary * @see GGML_CANN_CALL_ACLNN_OP */ #define GGML_CANN_CALL_OP_UNARY(OP_NAME) \ do { \ auto lambda = [](ggml_backend_cann_context& ctx, \ aclTensor* acl_src, \ aclTensor* acl_dst) { \ GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \ }; \ ggml_cann_op_unary(lambda, ctx, dst); \ } \ while (0) /** * @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated. * * This macro wraps the specified ACLNN unary operator name into a lambda expression, * and passes it to `ggml_cann_op_unary_gated`, which handles the common logic for * executing gated unary ops in the CANN backend. * * Internally, this macro expands to a lambda like: * @code * [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { * GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); * }; * @endcode * * This lambda is then passed to `ggml_cann_op_unary_gated`, which applies the operation. * * @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP. * * @see ggml_cann_op_unary_gated * @see GGML_CANN_CALL_ACLNN_OP */ #define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \ do { \ auto lambda = [](ggml_backend_cann_context& ctx, \ aclTensor* acl_src, \ aclTensor* acl_dst) { \ GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \ }; \ ggml_cann_op_unary_gated(lambda, ctx, dst); \ } \ while (0) #endif // CANN_ACLNN_OPS