#include "ggml.h" #include "mmf.hpp" void ggml_zdnn_mul_mat_f( const ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_TENSOR_BINARY_OP_LOCALS; const enum ggml_type type = src0->type; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); const ggml_tensor * weights = src0; const ggml_tensor * inputs = src1; ggml_tensor * output = dst; ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra; ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra; ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra; ggml_backend_zdnn_buffer * bias_extra = (ggml_backend_zdnn_buffer *)output_extra->extra; const int64_t weights_rows = ne01; const int64_t weights_cols = ne00; const int64_t inputs_rows = ne11; const int64_t inputs_cols = ne10; assert(inputs_cols == weights_cols); const int64_t output_rows = ne1; const int64_t output_cols = ne0; // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", // __func__, weights_extra->name, // weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0], // weights_extra->pre_tfm_desc.dim1, // weights_extra->pre_tfm_desc.dim2, // weights_extra->pre_tfm_desc.dim3, // weights_extra->pre_tfm_desc.dim4); // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", // __func__, inputs_extra->name, // inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0], // inputs_extra->pre_tfm_desc.dim1, // inputs_extra->pre_tfm_desc.dim2, // inputs_extra->pre_tfm_desc.dim3, // inputs_extra->pre_tfm_desc.dim4); GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]"); GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]"); GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]"); GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]"); ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &bias_extra->ztensor, false, true, MATMUL_OP_ADDITION, &output_extra->ztensor)); // TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient. ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data)); GGML_UNUSED(ctx); GGML_UNUSED(weights_rows); GGML_UNUSED(weights_cols); GGML_UNUSED(inputs_rows); GGML_UNUSED(inputs_cols); GGML_UNUSED(output_rows); GGML_UNUSED(output_cols); }