#include "ssm-scan.cuh" template __global__ void __launch_bounds__(splitD, 2) ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2, const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5, const int32_t * __restrict__ src6, float * __restrict__ dst, const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3, const int src2_nb1, const int src2_nb2, const int src3_nb1, const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3, const int64_t s_off, const int64_t d_inner, const int64_t L) { constexpr int warp_size = ggml_cuda_get_physical_warp_size(); const int bidx = blockIdx.x; // split along B (sequences) const int bidy = blockIdx.y; // split along D (d_inner) const int tid = threadIdx.x; const int wid = tid / 32; const int wtid = tid % 32; extern __shared__ float smem[]; const int stride_sA = N + 1; const int stride_ss0 = N + 1; float * smem_A = smem; float * smem_s0 = smem_A + splitD * stride_sA; const float * s0_block = (const float *) ((const char *) src0 + src6[bidx] * src0_nb3 + bidy * splitD * src0_nb2); const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb3) + bidy * splitD * sizeof(float)); const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float)); const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1); const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb3)); const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb3)); float * y_block = (float *) ((char *) dst + (bidx * d_inner * L * sizeof(float)) + bidy * splitD * sizeof(float)); float * s_block = (float *) ((char *) dst + s_off + bidx * src0_nb3 + bidy * splitD * src0_nb2); const int stride_s0 = src0_nb2 / sizeof(float); const int stride_x = src1_nb2 / sizeof(float); const int stride_dt = src2_nb1 / sizeof(float); const int stride_A = src3_nb1 / sizeof(float); const int stride_B = src4_nb2 / sizeof(float); const int stride_C = src5_nb2 / sizeof(float); const int stride_s = stride_s0; const int stride_y = d_inner; // can N not be 16? for example 32? if (N == 16) { #pragma unroll for (size_t i = 0; i < splitD / 4; i += 2) { float value = A_block[(wid * warp_size + i) * stride_A + wtid]; // todo: bank conflict // I am always confused with how to use the swizzling method to solve // bank conflit. Hoping somebody can tell me. smem_A[(wid * warp_size + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; } #pragma unroll for (size_t i = 0; i < splitD / 4; i += 2) { float value = s0_block[(wid * warp_size + i) * stride_s0 + wtid]; smem_s0[(wid * warp_size + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; } } __syncthreads(); for (int64_t i = 0; i < L; i++) { float dt_soft_plus = dt_block[i * stride_dt + tid]; if (dt_soft_plus <= 20.0f) { dt_soft_plus = log1pf(exp(dt_soft_plus)); } float x_dt = x_block[i * stride_x + tid] * dt_soft_plus; float sumf = 0.0f; #pragma unroll for (size_t j = 0; j < N; j++) { float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) + (B_block[i * stride_B + j] * x_dt); sumf += state * C_block[i * stride_C + j]; if (i == L - 1) { s_block[tid * stride_s + j] = state; } else { smem_s0[tid * stride_ss0 + j] = state; } } __syncthreads(); y_block[i * stride_y + tid] = sumf; } } // assumes as many threads as d_state template __global__ void __launch_bounds__(d_state, 1) ssm_scan_f32_group( const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2, const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5, const int32_t * __restrict__ src6, float * __restrict__ dst, const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3, const int src2_nb1, const int src2_nb2, const int src3_nb1, const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3, const int64_t s_off, const int64_t n_head, const int64_t d_head, const int64_t n_group, const int64_t n_tok) { const int head_idx = (blockIdx.x * splitH) / d_head; const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float); const int seq_idx = blockIdx.y; const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float); const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state); const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float)); const float * dt_block = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float)); const float * A_block = (const float *) ((const char *) src3 + head_idx * src3_nb1); const float * B_block = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off)); const float * C_block = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off)); float * y_block = dst + (seq_idx * n_tok * n_head * d_head) + blockIdx.x * splitH; float * s_block = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state); // strides across n_seq_tokens const int stride_x = src1_nb2 / sizeof(float); const int stride_dt = src2_nb1 / sizeof(float); const int stride_B = src4_nb2 / sizeof(float); const int stride_C = src5_nb2 / sizeof(float); const int stride_y = n_head * d_head; float state[splitH]; // for the parallel accumulation __shared__ float stateC[splitH * d_state]; #pragma unroll for (int j = 0; j < splitH; j++) { state[j] = s0_block[j * d_state + threadIdx.x]; } for (int64_t i = 0; i < n_tok; i++) { // TODO: only calculate dA and dt_soft_plus once per head instead of every splitH head elements // TODO: only calculate B and C once per head group // NOTE: dt_soft_plus, dA and x_dt have the same value across threads here. float dt_soft_plus = dt_block[i * stride_dt]; if (dt_soft_plus <= 20.0f) { dt_soft_plus = log1pf(expf(dt_soft_plus)); } const float dA = expf(dt_soft_plus * A_block[0]); const float B = B_block[i * stride_B + threadIdx.x]; const float C = C_block[i * stride_C + threadIdx.x]; // across d_head #pragma unroll for (int j = 0; j < splitH; j++) { const float x_dt = x_block[i * stride_x + j] * dt_soft_plus; state[j] = (state[j] * dA) + (B * x_dt); stateC[j * d_state + threadIdx.x] = state[j] * C; } __syncthreads(); // parallel accumulation for stateC // TODO: simplify { static_assert((d_state & -d_state) == d_state, "the state size has to be a power of 2"); static_assert((splitH & -splitH) == splitH, "splitH has to be a power of 2"); // reduce until w matches the warp size // TODO: does this work even when the physical warp size is 64? #pragma unroll for (int w = d_state; w > WARP_SIZE; w >>= 1) { // (assuming there are d_state threads) #pragma unroll for (int j = 0; j < ((w >> 1) * splitH + d_state - 1) / d_state; j++) { // TODO: check for bank conflicts const int k = (threadIdx.x % (w >> 1)) + (d_state * (threadIdx.x / (w >> 1))) + j * d_state * (d_state / (w >> 1)); stateC[k] += stateC[k + (w >> 1)]; } __syncthreads(); } static_assert(splitH >= d_state / WARP_SIZE); #pragma unroll for (int j = 0; j < splitH / (d_state / WARP_SIZE); j++) { float y = stateC[(threadIdx.x % WARP_SIZE) + d_state * (threadIdx.x / WARP_SIZE) + j * d_state * (d_state / WARP_SIZE)]; y = warp_reduce_sum(y); // store the above accumulations if (threadIdx.x % WARP_SIZE == 0) { const int k = threadIdx.x / WARP_SIZE + j * (d_state / WARP_SIZE); y_block[i * stride_y + k] = y; } } } } // write back the state #pragma unroll for (int j = 0; j < splitH; j++) { s_block[j * d_state + threadIdx.x] = state[j]; } } static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3, const float * src4, const float * src5, const int32_t * src6, float * dst, const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3, const int src2_nb1, const int src2_nb2, const int src3_nb1, const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim, const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq, cudaStream_t stream) { // NOTE: if you change conditions here, be sure to update the corresponding supports_op condition! if (src3_nb1 == sizeof(float)) { // Mamba-2 if (d_state == 128) { const int threads = 128; GGML_ASSERT(d_state % threads == 0); // NOTE: can be any power of two between 4 and 64 const int splitH = 16; GGML_ASSERT(head_dim % splitH == 0); const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1); ssm_scan_f32_group<16, 128><<>>( src0, src1, src2, src3, src4, src5, src6, dst, src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok); } else if (d_state == 256) { // Falcon-H1 const int threads = 256; // NOTE: can be any power of two between 8 and 64 const int splitH = 16; GGML_ASSERT(head_dim % splitH == 0); const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1); ssm_scan_f32_group<16, 256><<>>( src0, src1, src2, src3, src4, src5, src6, dst, src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok); } else { GGML_ABORT("doesn't support d_state!=(128 or 256)."); } } else { const int threads = 128; // Mamba-1 GGML_ASSERT(n_head % threads == 0); GGML_ASSERT(head_dim == 1); GGML_ASSERT(n_group == 1); const dim3 blocks(n_seq, (n_head + threads - 1) / threads, 1); const int smem_size = (threads * (d_state + 1) * 2) * sizeof(float); if (d_state == 16) { ssm_scan_f32<128, 16><<>>( src0, src1, src2, src3, src4, src5, src6, dst, src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok); } else { GGML_ABORT("doesn't support d_state!=16."); } } } void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; // s const struct ggml_tensor * src1 = dst->src[1]; // x const struct ggml_tensor * src2 = dst->src[2]; // dt const struct ggml_tensor * src3 = dst->src[3]; // A const struct ggml_tensor * src4 = dst->src[4]; // B const struct ggml_tensor * src5 = dst->src[5]; // C const struct ggml_tensor * src6 = dst->src[6]; // ids const int64_t nc = src0->ne[0]; // d_state const int64_t nr = src0->ne[1]; // head_dim or 1 const int64_t nh = src1->ne[1]; // n_head const int64_t ng = src4->ne[1]; // n_group const int64_t n_t = src1->ne[2]; // number of tokens per sequence const int64_t n_s = src1->ne[3]; // number of sequences in the batch const int64_t s_off = ggml_nelements(src1) * sizeof(float); GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*n_s == ggml_nelements(dst)); GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src2->nb[0] == sizeof(float)); GGML_ASSERT(src3->nb[0] == sizeof(float)); GGML_ASSERT(src4->nb[0] == sizeof(float)); GGML_ASSERT(src5->nb[0] == sizeof(float)); GGML_ASSERT(src6->nb[0] == sizeof(int32_t)); const float * src0_d = (const float *) src0->data; const float * src1_d = (const float *) src1->data; const float * src2_d = (const float *) src2->data; const float * src3_d = (const float *) src3->data; const float * src4_d = (const float *) src4->data; const float * src5_d = (const float *) src5->data; const int32_t * src6_d = (const int32_t *) src6->data; float * dst_d = (float *) dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src6->type == GGML_TYPE_I32); GGML_ASSERT(dst->type == GGML_TYPE_F32); ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src6_d, dst_d, src0->nb[2], src0->nb[3], src1->nb[2], src1->nb[3], src2->nb[1], src2->nb[2], src3->nb[1], src4->nb[2], src4->nb[3], src5->nb[2], src5->nb[3], s_off, nc, nr, nh, ng, n_t, n_s, stream); }