#include "models.h" llm_build_mpt::llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * pos; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); auto * inp_attn = build_attn_inp_kv(); if (model.pos_embd) { // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); cb(inpL, "inpL", -1); } ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * attn_norm; attn_norm = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(attn_norm, "attn_norm", il); // self-attention { cur = attn_norm; cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); if (model.layers[il].bqkv) { cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); } if (hparams.f_clamp_kqv > 0.0f) { cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(cur, "wqkv_clamped", il); } ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 0 * sizeof(float) * (n_embd)); ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd)); ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)); // Q/K Layernorm if (model.layers[il].attn_q_norm) { Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens); Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // Add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // feed forward { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }