#include "ggml.h" #include "common.cuh" #include "mmv.cuh" template static __global__ void mul_mat_vec( const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst, const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst, const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) { const int row = blockIdx.x; const int channel_dst = blockIdx.y; const int channel_x = ids ? ids[channel_dst] : channel_dst / channel_ratio; const int channel_y = ids ? channel_dst % nchannels_y : channel_dst; const int sample_dst = blockIdx.z; const int sample_x = sample_dst / sample_ratio; const int sample_y = sample_dst; const int tid = threadIdx.x; constexpr int warp_size = ggml_cuda_get_physical_warp_size(); x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row; y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y; dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst; const float2 * y2 = (const float2 *) y; extern __shared__ char data_mmv[]; float * buf_iw = (float *) data_mmv; if (block_size > warp_size) { if (tid < warp_size) { buf_iw[tid] = 0.0f; } __syncthreads(); } float sumf[ncols_dst] = {0.0f}; if constexpr (std::is_same::value) { const float2 * x2 = (const float2 *) x; for (int col2 = tid; col2 < ncols2; col2 += block_size) { const float2 tmpx = x2[col2]; #pragma unroll for (int j = 0; j < ncols_dst; ++j) { const float2 tmpy = y2[j*stride_col_y2 + col2]; sumf[j] += tmpx.x*tmpy.x; sumf[j] += tmpx.y*tmpy.y; } } } else if constexpr (std::is_same::value) { const half2 * x2 = (const half2 *) x; if (std::is_same::value) { for (int col2 = tid; col2 < ncols2; col2 += block_size) { const float2 tmpx = __half22float2(x2[col2]); #pragma unroll for (int j = 0; j < ncols_dst; ++j) { const float2 tmpy = y2[j*stride_col_y2 + col2]; sumf[j] += tmpx.x * tmpy.x; sumf[j] += tmpx.y * tmpy.y; } } } else { #ifdef FP16_AVAILABLE half2 sumh2[ncols_dst] = {{0.0f, 0.0f}}; for (int col2 = tid; col2 < ncols2; col2 += block_size) { const half2 tmpx = x2[col2]; #pragma unroll for (int j = 0; j < ncols_dst; ++j) { const float2 tmpy = y2[j*stride_col_y2 + col2]; sumh2[j] += tmpx * make_half2(tmpy.x, tmpy.y); } } #pragma unroll for (int j = 0; j < ncols_dst; ++j) { sumf[j] = __low2float(sumh2[j]) + __high2float(sumh2[j]); } #else NO_DEVICE_CODE; #endif // FP16_AVAILABLE } } else if constexpr (std::is_same::value) { const int * x2 = (const int *) x; for (int col2 = tid; col2 < ncols2; col2 += block_size) { const int tmpx = x2[col2]; #pragma unroll for (int j = 0; j < ncols_dst; ++j) { const float2 tmpy = y2[j*stride_col_y2 + col2]; sumf[j] += float(reinterpret_cast(&tmpx)[0]) * tmpy.x; sumf[j] += float(reinterpret_cast(&tmpx)[1]) * tmpy.y; } } } else { static_assert(std::is_same::value, "unsupported type"); } #pragma unroll for (int j = 0; j < ncols_dst; ++j) { sumf[j] = warp_reduce_sum(sumf[j]); if (block_size > warp_size) { buf_iw[tid/warp_size] = sumf[j]; __syncthreads(); if (tid < warp_size) { sumf[j] = buf_iw[tid]; sumf[j] = warp_reduce_sum(sumf[j]); } if (j < ncols_dst) { __syncthreads(); } } } if (tid >= ncols_dst) { return; } dst[tid*stride_col_dst + row] = sumf[tid]; } template static void launch_mul_mat_vec_cuda( const T * x, const float * y, const int32_t * ids, float * dst, const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x, const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, cudaStream_t stream) { GGML_ASSERT(ncols % 2 == 0); GGML_ASSERT(stride_row % 2 == 0); GGML_ASSERT(stride_col_y % 2 == 0); GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0); GGML_ASSERT( nsamples_dst % nsamples_x == 0); const int64_t channel_ratio = nchannels_dst / nchannels_x; const int64_t sample_ratio = nsamples_dst / nsamples_x; int device; int warp_size; CUDA_CHECK(cudaGetDevice(&device)); warp_size = ggml_cuda_info().devices[device].warp_size; int64_t block_size_best = warp_size; int64_t niter_best = (ncols + 2*warp_size - 1) / (2*warp_size); int64_t max_block_size = 256; if(ggml_cuda_info().devices[device].cc > GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_info().devices[device].cc < GGML_CUDA_CC_RDNA1) { max_block_size = 128; } for (int64_t block_size = 2*warp_size; block_size <= max_block_size; block_size += warp_size) { const int64_t niter = (ncols + 2*block_size - 1) / (2*block_size); if (niter < niter_best) { niter_best = niter; block_size_best = block_size; } } const int smem = warp_size*sizeof(float); const dim3 block_nums(nrows, nchannels_dst, nsamples_dst); const dim3 block_dims(block_size_best, 1, 1); switch (block_size_best) { case 32: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; case 64: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; case 96: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; case 128: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; case 160: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; case 192: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; case 224: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; case 256: { mul_mat_vec<<>> (x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); } break; default: { GGML_ABORT("fatal error"); } break; } } template static void mul_mat_vec_cuda_switch_ncols_dst( const T * x, const float * y, const int32_t * ids, float * dst, const int64_t ncols, const int64_t nrows, const int64_t ncols_dst, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x, const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, cudaStream_t stream) { switch (ncols_dst) { case 1: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; case 2: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; case 3: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; case 4: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; case 5: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; case 6: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; case 7: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; case 8: launch_mul_mat_vec_cuda (x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); break; default: GGML_ABORT("fatal error"); break; } } template static void mul_mat_vec_cuda( const T * x, const float * y, const int32_t * ids, float * dst, const int64_t ncols, const int64_t nrows, const int64_t ncols_dst, const int64_t stride_row, const int64_t stride_col_y, const int stride_col_dst, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x, const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, enum ggml_prec prec, cudaStream_t stream) { if constexpr(std::is_same::value) { if (prec == GGML_PREC_DEFAULT) { mul_mat_vec_cuda_switch_ncols_dst (x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); return; } } mul_mat_vec_cuda_switch_ncols_dst (x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); } void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { GGML_ASSERT( src1->type == GGML_TYPE_F32); GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_TENSOR_BINARY_OP_LOCALS; const size_t ts_src0 = ggml_type_size(src0->type); const size_t ts_src1 = ggml_type_size(src1->type); const size_t ts_dst = ggml_type_size(dst->type); GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1. GGML_ASSERT(ne13 == ne3); GGML_ASSERT( nb00 == ts_src0); GGML_ASSERT( nb10 == ts_src1); GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type)); GGML_ASSERT( nb0 == ts_dst); const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32; const float * src1_d = (const float *) src1->data; const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr; float * dst_d = (float *) dst->data; const int64_t s01 = src0->nb[1] / ts_src0; const int64_t s11 = src1->nb[1] / ts_src1; const int64_t s1 = dst->nb[1] / ts_dst; const int64_t s02 = src0->nb[2] / ts_src0; const int64_t s12 = src1->nb[2] / ts_src1; const int64_t s2 = dst->nb[2] / ts_dst; const int64_t s03 = src0->nb[3] / ts_src0; const int64_t s13 = src1->nb[3] / ts_src1; const int64_t s3 = dst->nb[3] / ts_dst; // For MUL_MAT_ID the memory layout is different than for MUL_MAT: const int64_t ncols_dst = ids ? ne2 : ne1; const int64_t nchannels_y = ids ? ne11 : ne12; const int64_t nchannels_dst = ids ? ne1 : ne2; const int64_t stride_channel_dst = ids ? s1 : s2; const int64_t stride_channel_y = ids ? s11 : s12; GGML_ASSERT(!ids || ncols_dst == 1); switch (src0->type) { case GGML_TYPE_F32: { const float * src0_d = (const float *) src0->data; mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1, ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst, ne03, ne3, s03, s13, s3, prec, ctx.stream()); } break; case GGML_TYPE_F16: { const half * src0_d = (const half *) src0->data; mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1, ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst, ne03, ne3, s03, s13, s3, prec, ctx.stream()); } break; case GGML_TYPE_BF16: { const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data; mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1, ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst, ne03, ne3, s03, s13, s3, prec, ctx.stream()); } break; default: GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type)); } } void ggml_cuda_op_mul_mat_vec( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream) { GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t row_diff = row_high - row_low; const int id = ggml_cuda_get_device(); const int cc = ggml_cuda_info().devices[id].cc; const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32; // ggml_cuda_op provides single, contiguous matrices const int64_t stride_row = ne00; const int64_t stride_col_y = ne10; const int64_t stride_col_dst = id == ctx.device ? ne0 : row_diff; // main device has larger memory buffer const int64_t nchannels_x = 1; const int64_t nchannels_y = 1; const int64_t nchannels_dst = 1; const int64_t stride_channel_x = 0; const int64_t stride_channel_y = 0; const int64_t stride_channel_dst = 0; const int64_t nsamples_x = 1; const int64_t nsamples_dst = 1; const int64_t stride_sample_x = 0; const int64_t stride_sample_y = 0; const int64_t stride_sample_dst = 0; switch (src0->type) { case GGML_TYPE_F32: { const float * src0_d = (const float *) src0_dd_i; mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream); } break; case GGML_TYPE_F16: { const half * src0_d = (const half *) src0_dd_i; mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream); } break; case GGML_TYPE_BF16: { const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i; mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream); } break; default: GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type)); } GGML_UNUSED(ctx); GGML_UNUSED(src1); GGML_UNUSED(dst); GGML_UNUSED(src1_ddq_i); GGML_UNUSED(src1_ncols); GGML_UNUSED(src1_padded_row_size); } bool ggml_cuda_should_use_mmv(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11) { if (src0_ne[0] % 2 != 0) { return false; } switch (type) { case GGML_TYPE_F32: if (GGML_CUDA_CC_IS_NVIDIA(cc)) { if (cc >= GGML_CUDA_CC_ADA_LOVELACE) { return ne11 <= 8; } if (cc >= GGML_CUDA_CC_TURING) { return ne11 <= 4; } return ne11 <= 3; } else if (GGML_CUDA_CC_IS_AMD(cc)) { if (fp32_mma_hardware_available(cc)) { return ne11 <= 3; } return ne11 <= 8; } return ne11 <= 8; case GGML_TYPE_F16: if (GGML_CUDA_CC_IS_NVIDIA(cc)) { const bool src0_small = (src0_ne[1] <= 512 || src0_ne[2]*src0_ne[3] == 1); if (cc >= GGML_CUDA_CC_ADA_LOVELACE) { return src0_small && ne11 <= 4; } if (fp16_mma_hardware_available(cc)) { return src0_small && ne11 <= 3; } return ne11 <= 8; } else if (GGML_CUDA_CC_IS_AMD(cc)) { if (fp16_mma_hardware_available(cc)) { if (GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) { return ne11 <= 5; } return ne11 <= 2; } return ne11 <= 8; } return ne11 <= 8; case GGML_TYPE_BF16: if (GGML_CUDA_CC_IS_NVIDIA(cc)) { const bool src0_small = (src0_ne[1] <= 512 || src0_ne[2]*src0_ne[3] == 1); if (cc >= GGML_CUDA_CC_ADA_LOVELACE) { return src0_small && ne11 <= 4; } if (bf16_mma_hardware_available(cc)) { return src0_small && ne11 <= 3; } return ne11 <= 8; } else if (GGML_CUDA_CC_IS_AMD(cc)) { if (bf16_mma_hardware_available(cc)) { return ne11 <= 3; } return ne11 <= 8; } return ne11 <= 8; default: return false; } }