#include #include #include #include #include #include #include #include #include // // dummy backend with configurable max_buffer_size, tracks allocations uint8_t * const alloc_base = (uint8_t *) 16; struct dummy_backend_context { size_t max_buffer_size = 64; size_t alignment = 8; ggml_backend_buffer_i buffer_interface; std::vector buffers; size_t allocated_total() const { size_t n = 0; for (ggml_backend_buffer_t buf : buffers) { n += ggml_backend_buffer_get_size(buf); } return n; } }; // ggml_backend_buffer_type interface static const char * dummy_backend_buffer_type_get_name(ggml_backend_buffer_type_t) { return "dummy_buffer_type"; } static ggml_backend_buffer_t dummy_backend_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { dummy_backend_context * ctx = (dummy_backend_context *) buft->context; ggml_backend_buffer_t & buffer = ctx->buffers.emplace_back(); buffer = ggml_backend_buffer_init(buft, ctx->buffer_interface, ctx, size); return buffer; } static size_t dummy_backend_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { dummy_backend_context * ctx = (dummy_backend_context *) buft->context; return ctx->alignment; } static size_t dummy_backend_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { dummy_backend_context * ctx = (dummy_backend_context *) buft->context; return ctx->max_buffer_size; } static bool dummy_backend_buffer_type_is_host(ggml_backend_buffer_type_t) { return true; } // ggml_backend_buffer interface static void dummy_backend_buffer_free_buffer(ggml_backend_buffer_t buffer) { dummy_backend_context * ctx = (dummy_backend_context *) buffer->context; auto i = std::find(ctx->buffers.begin(), ctx->buffers.end(), buffer); GGML_ASSERT(i != ctx->buffers.end()); ctx->buffers.erase(i); } static void * dummy_backend_buffer_get_base(ggml_backend_buffer_t) { return alloc_base; } static ggml_status dummy_backend_buffer_init_tensor(ggml_backend_buffer_t, ggml_tensor *) { return GGML_STATUS_SUCCESS; } static void dummy_backend_buffer_memset_tensor(ggml_backend_buffer_t, ggml_tensor *, uint8_t, size_t, size_t) {} static void dummy_backend_buffer_set_tensor(ggml_backend_buffer_t, ggml_tensor *, const void *, size_t, size_t) {} static void dummy_backend_buffer_get_tensor(ggml_backend_buffer_t, const ggml_tensor *, void *, size_t, size_t) {} static void dummy_backend_buffer_clear(ggml_backend_buffer_t, uint8_t) {} // dummy_backend (not really a full backend, just provides what gallocr needs) struct dummy_backend { std::unique_ptr context; ggml_backend_buffer_type buffer_type; }; static dummy_backend dummy_backend_init(size_t max_buffer_size, size_t alignment = 8) { dummy_backend b{}; b.context = std::make_unique(); b.context->alignment = alignment; b.context->max_buffer_size = max_buffer_size; b.context->buffer_interface.free_buffer = dummy_backend_buffer_free_buffer; b.context->buffer_interface.get_base = dummy_backend_buffer_get_base; b.context->buffer_interface.init_tensor = dummy_backend_buffer_init_tensor; b.context->buffer_interface.memset_tensor = dummy_backend_buffer_memset_tensor; b.context->buffer_interface.set_tensor = dummy_backend_buffer_set_tensor; b.context->buffer_interface.get_tensor = dummy_backend_buffer_get_tensor; b.context->buffer_interface.clear = dummy_backend_buffer_clear; b.buffer_type.context = b.context.get(); b.buffer_type.iface.get_name = dummy_backend_buffer_type_get_name; b.buffer_type.iface.alloc_buffer = dummy_backend_buffer_type_alloc_buffer; b.buffer_type.iface.get_alignment = dummy_backend_buffer_type_get_alignment; b.buffer_type.iface.get_max_size = dummy_backend_buffer_type_get_max_size; b.buffer_type.iface.is_host = dummy_backend_buffer_type_is_host; return b; } // // test utilities struct test_context_with_graph { ggml_context * ctx; ggml_cgraph * graph; ggml_context_ptr ctx_ptr; }; static test_context_with_graph make_context() { ggml_init_params params{}; params.mem_size = 48 * ggml_tensor_overhead() + ggml_graph_overhead(); params.no_alloc = true; ggml_context * ctx = ggml_init(params); ggml_context_ptr ctx_ptr = ggml_context_ptr(ctx); ggml_cgraph * graph = ggml_new_graph(ctx); return { ctx, graph, std::move(ctx_ptr) }; } static ggml_tensor * make_input_1d(ggml_context * ctx, int64_t n_elements) { ggml_tensor * t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); ggml_set_input(t); return t; } static ggml_tensor * make_input_with_size(ggml_context * ctx, size_t size_bytes) { GGML_ASSERT(size_bytes % 4 == 0); return make_input_1d(ctx, size_bytes / 4); } static void assign_names(ggml_context * ctx, const char * prefix = "x") { int i = 0; for (ggml_tensor * t = ggml_get_first_tensor(ctx); t; t = ggml_get_next_tensor(ctx, t)) { ggml_format_name(t, "%s%d", prefix, i++); } } static int get_leaf_id(ggml_cgraph * graph, const char * tensor_name) { for (int i = 0; i < graph->n_leafs; ++i) { if (strncmp(graph->leafs[i]->name, tensor_name, GGML_MAX_NAME) == 0) { return i; } } fprintf(stderr, "leaf not found: %s\n", tensor_name); return -1; } static int get_node_id(ggml_cgraph * graph, const char * tensor_name) { for (int i = 0; i < graph->n_nodes; ++i) { if (strncmp(graph->nodes[i]->name, tensor_name, GGML_MAX_NAME) == 0) { return i; } } fprintf(stderr, "node not found: %s", tensor_name); return -1; } static ggml_gallocr_ptr allocate_graph(ggml_cgraph * graph, ggml_tensor * out, ggml_backend_buffer_type_t buft) { ggml_set_output(out); ggml_build_forward_expand(graph, out); ggml_gallocr_ptr galloc = ggml_gallocr_ptr(ggml_gallocr_new(buft)); bool result = ggml_gallocr_alloc_graph(galloc.get(), graph); GGML_ASSERT(result); return galloc; } // // correctness checks for result allocations static void check_all_allocated(ggml_cgraph * graph) { for (int i = 0; i < ggml_graph_n_nodes(graph); ++i) { ggml_tensor * t = ggml_graph_node(graph, i); GGML_ASSERT(t->buffer != nullptr); GGML_ASSERT(t->data != nullptr); } } static void check_max_size(ggml_context * ctx) { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t; t = ggml_get_next_tensor(ctx, t)) { auto buft = ggml_backend_buffer_get_type(t->buffer); size_t max_size = ggml_backend_buft_get_max_size(buft); size_t offset = (char *) t->data - (char *) ggml_backend_buffer_get_base(t->buffer); GGML_ASSERT(t->data >= ggml_backend_buffer_get_base(t->buffer)); GGML_ASSERT((size_t) offset + ggml_nbytes(t) <= max_size); } } static bool can_reuse_memory(ggml_cgraph * graph, int current_i, ggml_tensor * current, ggml_tensor * other) { if (other->flags & GGML_TENSOR_FLAG_OUTPUT) { return false; } // Check if `other` is still "alive", ie. an input to any node after the `current` op for (int i = current_i; i < ggml_graph_n_nodes(graph); ++i) { ggml_tensor * t = ggml_graph_node(graph, i); for (int s = 0; s < GGML_MAX_SRC; s++) { if (t == current && ggml_op_can_inplace(t->op)) { continue; } if (t->src[s] == other) { return false; } if (t->src[s] && t->src[s]->view_src == other) { return false; } } } return true; } static bool memory_overlap(ggml_tensor * a, ggml_tensor * b) { if (a->buffer != b->buffer) { return false; } int64_t a0 = (int64_t) a->data; int64_t a1 = a0 + ggml_nbytes(a); int64_t b0 = (int64_t) b->data; int64_t b1 = b0 + ggml_nbytes(b); return a1 > b0 && b1 > a0; } static ggml_tensor * get_view_source(ggml_tensor * t) { while (t->view_src) { t = t->view_src; } return t; } static void check_no_overlap(ggml_cgraph * graph) { for (int i = 0; i < ggml_graph_n_nodes(graph); ++i) { for (int j = 0; j < i; ++j) { ggml_tensor * t = ggml_graph_node(graph, i); ggml_tensor * o = ggml_graph_node(graph, j); GGML_ASSERT(t != o); if (get_view_source(t) == get_view_source(o)) { continue; } if (memory_overlap(t, o)) { GGML_ASSERT(can_reuse_memory(graph, i, t, o)); } } } } // // test cases // Scenario where the first backend buffer is completely exhausted and there are further // tensors which require a second buffer static void test_max_size_too_many_tensors() { dummy_backend backend = dummy_backend_init(16); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[7]; x[0] = make_input_with_size(ctx, 8); x[1] = make_input_with_size(ctx, 8); x[2] = make_input_with_size(ctx, 8); x[3] = ggml_mul(ctx, x[0], x[1]); x[4] = ggml_add(ctx, x[1], x[2]); x[5] = ggml_add(ctx, x[3], x[0]); x[6] = ggml_add(ctx, x[4], x[5]); assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[6], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); check_max_size(ctx); GGML_ASSERT(backend.context->allocated_total() <= 16 + 16); } // Scenario where there is some space left in the first buffer, but not enough to accomodate // a larger tensor, so a second buffer is required static void test_max_size_tensor_too_large() { dummy_backend backend = dummy_backend_init(32); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[3]; x[0] = make_input_with_size(ctx, 16); // chunk 0, [0 , 16) x[1] = make_input_with_size(ctx, 8); // chunk 0, [16, 24) x[2] = ggml_concat(ctx, x[0], x[1], 0); // chunk 1, [0 , 24) assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[2], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); check_max_size(ctx); GGML_ASSERT(backend.context->allocated_total() <= 32 + 24); } // Scenario where a single tensor exceeds the max buffer size - in this case the allocator // should try to create a bigger buffer anyway, and wait for the backend to throw an error. // Backends may report an artificially lower max size in some cases for compatibility reasons. static void test_tensor_larger_than_max_size() { dummy_backend backend = dummy_backend_init(16); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[2]; x[0] = make_input_with_size(ctx, 24); x[1] = ggml_scale(ctx, x[0], 2.0f); assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[1], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); GGML_ASSERT(backend.context->allocated_total() == 24); } // This test assumes a max of 16 buffer chunks, and tries to allocate tensors that would // require more. Expectation is that the last buffer should grow to fit everything, // leaving it to the backend to error out if it can't allocate that much. static void test_not_enough_chunks() { const int max_chunks = 16; const int max_size = 8; dummy_backend backend = dummy_backend_init(max_size); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[max_chunks + 1]; for (int i = 0; i < max_chunks + 1; ++i) { x[i] = make_input_with_size(ctx, max_size); } ggml_tensor * acc = x[0]; for (int i = 0; i < max_chunks; ++i) { acc = ggml_add(ctx, acc, x[i + 1]); } assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, acc, &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); GGML_ASSERT(backend.context->allocated_total() > max_chunks * max_size); } // Fill up leftover unallocated space of a chunk after allocating a large tensor that // requires a new chunk. static void test_fill_leftover_space() { dummy_backend backend = dummy_backend_init(16); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[4]; x[0] = make_input_with_size(ctx, 8); x[1] = ggml_pad(ctx, x[0], 2, 0, 0, 0); x[3] = ggml_mean(ctx, x[1]); assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[3], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); check_max_size(ctx); GGML_ASSERT(backend.context->allocated_total() <= 12 + 16); } // Check that views don't require any extra memory static void test_view_inplace() { dummy_backend backend = dummy_backend_init(32); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[6]; x[0] = make_input_1d(ctx, 4); // chunk 0, [0, 16) x[1] = ggml_reshape_2d(ctx, x[0], 2, 2); // view of x0 x[2] = ggml_permute(ctx, x[1], 1, 0, 2, 3); // view of x0 x[3] = ggml_view_1d(ctx, x[2], 2, 4); // view of x0 x[4] = make_input_1d(ctx, 2); // chunk 0, [16, 24) x[5] = ggml_add(ctx, x[3], x[4]); // reuse (inplace add) assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[5], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); check_max_size(ctx); GGML_ASSERT(backend.context->allocated_total() <= 24); } static void test_reuse_and_free() { dummy_backend backend = dummy_backend_init(40); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[9]; x[0] = make_input_with_size(ctx, 24); x[1] = make_input_with_size(ctx, 8); x[2] = make_input_with_size(ctx, 8); x[3] = ggml_add(ctx, x[1], x[2]); // reuse, free x2 x[4] = ggml_pad(ctx, x[0], 2, 0, 0, 0); // alloc new buffer, free x0 x[5] = ggml_scale(ctx, x[4], 2.0f); // alloc from free block x[6] = ggml_add(ctx, x[4], x[5]); // reuse, free x5 x[7] = ggml_view_1d(ctx, x[6], 2, 8); // view x[8] = ggml_add(ctx, x[3], x[7]); // reuse assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[8], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); check_max_size(ctx); GGML_ASSERT(backend.context->allocated_total() <= 40 + 32 + 32); } static void test_merge_free_block(size_t max_buffer_size) { dummy_backend backend = dummy_backend_init(max_buffer_size); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[9]; x[0] = make_input_with_size(ctx, 16); x[1] = make_input_with_size(ctx, 16); x[2] = make_input_with_size(ctx, 16); x[3] = ggml_mean(ctx, x[0]); x[4] = ggml_mean(ctx, x[1]); x[5] = ggml_pad(ctx, x[2], 2, 0, 0, 0); x[6] = ggml_add(ctx, x[3], x[4]); x[7] = ggml_pad(ctx, x[6], 5, 0, 0, 0); x[8] = ggml_add(ctx, x[5], x[7]); assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[8], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); check_max_size(ctx); GGML_ASSERT(backend.context->allocated_total() <= 32 + 32 + 24); } // Check that previously allocated but freed memory is preferred over allocating // additional memory, even if the remaining space in a chunk would match tensor size better static void test_prefer_already_allocated_memory() { dummy_backend backend = dummy_backend_init(32, /*align*/ 4); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[3]; x[0] = make_input_with_size(ctx, 24); // [24b][8b unused] x[1] = ggml_mean(ctx, x[0]); // [24b free][4b][4b unused] x[2] = ggml_mean(ctx, x[1]); // should be allocated in the 24b block assign_names(ctx); ggml_gallocr_ptr galloc = allocate_graph(graph, x[2], &backend.buffer_type); check_all_allocated(graph); check_no_overlap(graph); GGML_ASSERT(backend.context->allocated_total() <= 28); } // test for allocating on multiple devices with some tensors in the graph // allocated externally (not by gallocr). static void test_multiple_buffer_types() { dummy_backend backend_a = dummy_backend_init(32); dummy_backend backend_b = dummy_backend_init(SIZE_MAX); auto [ctx_a, _a, ctx_a_ptr] = make_context(); auto [ctx_b, _b, ctx_b_ptr] = make_context(); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * a[2]; a[0] = make_input_with_size(ctx_a, 16); a[1] = make_input_with_size(ctx_a, 16); assign_names(ctx_a, "a"); ggml_tensor * b[2]; b[0] = make_input_with_size(ctx_b, 24); b[1] = make_input_with_size(ctx_b, 4); assign_names(ctx_b, "b"); ggml_tensor * x[9]; x[0] = make_input_with_size(ctx, 16); x[1] = ggml_mul(ctx, x[0], a[0]); x[2] = ggml_pad(ctx, x[1], 2, 0, 0, 0); x[3] = ggml_mul(ctx, x[2], b[0]); x[4] = ggml_mean(ctx, x[3]); x[5] = ggml_add(ctx, x[4], b[1]); x[6] = ggml_pad(ctx, x[5], 3, 0, 0, 0); x[7] = ggml_add(ctx, x[6], a[1]); x[8] = ggml_scale(ctx, x[7], 2.0f); assign_names(ctx, "x"); ggml_backend_buffer_ptr buf_a(ggml_backend_alloc_ctx_tensors_from_buft(ctx_a, &backend_a.buffer_type)); ggml_backend_buffer_ptr buf_b(ggml_backend_alloc_ctx_tensors_from_buft(ctx_b, &backend_b.buffer_type)); ggml_backend_buffer_type_t bufts[2] = { &backend_a.buffer_type, &backend_b.buffer_type }; // assign buffer types manually to avoid extra complexity from backend scheduler ggml_set_output(x[8]); ggml_build_forward_expand(graph, x[8]); GGML_ASSERT(graph->n_leafs == 5); int leaf_buffer_ids[5]; leaf_buffer_ids[get_leaf_id(graph, "a0")] = 0; leaf_buffer_ids[get_leaf_id(graph, "a1")] = 0; leaf_buffer_ids[get_leaf_id(graph, "b0")] = 1; leaf_buffer_ids[get_leaf_id(graph, "b1")] = 1; leaf_buffer_ids[get_leaf_id(graph, "x0")] = 0; GGML_ASSERT(graph->n_nodes == 8); int node_buffer_ids[8]; node_buffer_ids[get_node_id(graph, "x1")] = 0; node_buffer_ids[get_node_id(graph, "x2")] = 0; node_buffer_ids[get_node_id(graph, "x3")] = 1; node_buffer_ids[get_node_id(graph, "x4")] = 1; node_buffer_ids[get_node_id(graph, "x5")] = 1; node_buffer_ids[get_node_id(graph, "x6")] = 1; node_buffer_ids[get_node_id(graph, "x7")] = 0; node_buffer_ids[get_node_id(graph, "x8")] = 0; ggml_gallocr_ptr galloc(ggml_gallocr_new_n(bufts, 2)); ggml_gallocr_reserve_n(galloc.get(), graph, node_buffer_ids, leaf_buffer_ids); ggml_gallocr_alloc_graph(galloc.get(), graph); check_all_allocated(graph); check_no_overlap(graph); check_max_size(ctx); GGML_ASSERT(backend_a.context->allocated_total() <= 32 + 32 + 24); GGML_ASSERT(backend_b.context->allocated_total() <= 32 + 24); } static void test_buffer_size_zero() { dummy_backend backend_a = dummy_backend_init(SIZE_MAX); dummy_backend backend_b = dummy_backend_init(SIZE_MAX); auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[2]; x[0] = make_input_with_size(ctx, 16); x[1] = ggml_scale(ctx, x[0], 2.0f); ggml_set_output(x[1]); ggml_build_forward_expand(graph, x[1]); int leaf_buffer_ids[1] = { 0 }; int node_buffer_ids[1] = { 0 }; ggml_backend_buffer_type_t bufts[2] = { &backend_a.buffer_type, &backend_b.buffer_type }; ggml_gallocr_ptr galloc = ggml_gallocr_ptr(ggml_gallocr_new_n(bufts, 2)); bool res1 = ggml_gallocr_reserve_n(galloc.get(), graph, node_buffer_ids, leaf_buffer_ids); bool res2 = ggml_gallocr_alloc_graph(galloc.get(), graph); GGML_ASSERT(res1 && res2); check_all_allocated(graph); GGML_ASSERT(backend_a.context->allocated_total() == 16); GGML_ASSERT(backend_b.context->allocated_total() == 0); } // Test re-using gallocr for a different graph. The new graph has the same // total size, but one of the chunks is larger, so reallocation is required. static void test_reallocation() { dummy_backend backend = dummy_backend_init(32, /*align*/ 4); ggml_gallocr_ptr galloc; { auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[4]; x[0] = make_input_with_size(ctx, 24); x[1] = make_input_with_size(ctx, 16); x[2] = ggml_view_1d(ctx, x[0], 4, 0); x[3] = ggml_add(ctx, x[2], x[1]); assign_names(ctx); galloc = allocate_graph(graph, x[3], &backend.buffer_type); check_all_allocated(graph); GGML_ASSERT(backend.context->allocated_total() == 40); } { auto [ctx, graph, ctx_ptr] = make_context(); ggml_tensor * x[3]; x[0] = make_input_with_size(ctx, 20); x[1] = make_input_with_size(ctx, 20); x[2] = ggml_add(ctx, x[0], x[1]); assign_names(ctx); ggml_set_output(x[2]); ggml_build_forward_expand(graph, x[2]); bool result = ggml_gallocr_alloc_graph(galloc.get(), graph); GGML_ASSERT(result); check_all_allocated(graph); GGML_ASSERT(backend.context->allocated_total() == 40); } } static void run(const char * name, void (*f)()) { printf("%s ", name); fflush(stdout); f(); printf("PASSED\n"); } int main() { run("test_max_size_too_many_tensors", test_max_size_too_many_tensors); run("test_max_size_tensor_too_large", test_max_size_tensor_too_large); run("test_tensor_larger_than_max_size", test_tensor_larger_than_max_size); run("test_not_enough_chunks", test_not_enough_chunks); run("test_fill_leftover_space", test_fill_leftover_space); run("test_view_inplace", test_view_inplace); run("test_reuse_and_free", test_reuse_and_free); run("test_merge_free_block(32)", []() { test_merge_free_block(32); }); run("test_merge_free_block(SIZE_MAX)", []() { test_merge_free_block(SIZE_MAX); }); run("test_prefer_already_allocated_memory", test_prefer_already_allocated_memory); run("test_multiple_buffer_types", test_multiple_buffer_types); run("test_buffer_size_zero", test_buffer_size_zero); run("test_reallocation", test_reallocation); return 0; }