607 Commits

Author SHA1 Message Date
Gadflyii
3df2244df4 llama : add --no-host to disable host buffers (#16310)
* implement --no-host to disable host buffer

* fix equal_mparams

* move no-host enumeration order together with other model params

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-10-06 19:55:53 +02:00
Gabe Goodhart
c08002a198 chat : Granite Docling stopping (#16438)
* fix: Fix duplicate fake image before token on first slice

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use double-newline before overview image

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove incorrect newline at the end of granite chat template gen prompt

There should not be one, even for the language models.

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* tests: Remove bad newline from granite chat template test (legacy)

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-10-06 18:59:40 +02:00
Gabe Goodhart
ca71fb9b36 model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)
* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-10-05 14:57:47 +02:00
ddh0
f6dcda3900 server : context checkpointing for hybrid and recurrent models (#16382)
* initial commit for branch 3

* generalize `swa_checkpoint` to `ctx_checkpoint`

this extends `llama-server`'s SWA checkpointing logic to include
hybrid/recurrent models such as Jamba, Granite

* oops

* disable debug prints

* keep backwards compat with `--swa-checkpoints`

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update prompt re-processing message

* fix off-by-one error per GG

* keep `seq_rm` log per GG

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server : fix checkpoint logic to support recurrent caches

* server : cleanup and fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-03 21:34:51 +03:00
Sigbjørn Skjæret
946f71ed9a llama : fix shapes for bert/mpt q/k norm (#16409) 2025-10-03 14:40:25 +02:00
Piotr Wilkin (ilintar)
34fcc5a4ac model : Apertus model implementation (#15852)
* First attempt

* No permute during convert (fixes qk tensors), proper norm application.

* RoPE = NeoX

* Coherence!

* Migrate xielu params from tensors to hyperparameters

* Simple CUDA kernel

* Revert stupid LLM refactorings

* Chat template support

* configchecker / flake8 errors

* Reorder unary.cu

* I do conclude that LLMs are, in fact, stupid.

* Fix after merge

* Final newline

* Make xIELU an UNARY_OP

* Final newline

* Correctly account for parameter shift

* Argh.

* Update ggml/src/ggml-cpu/unary-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Refactor: remove unused methods, inline and factorize softplus, add const modifiers

* Revert CUDA changes, implement xIELU as a separate OP

* Pesky newline

* Add float2half / half2float for F16 inputs/outputs

* CUDA variants, attempt 2

* Actually, attempt 3

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Missing convert header

* Proper formula and reference for xIELU in the comments.

* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add tensor mappings for Apertus to global list instead

* Fix lazy on scalars

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Add comment about the constraints on positive/negative alpha

* Change `softplus` to `ggml_softplus`

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-02 20:43:22 +03:00
Shunta Saito
ded67b9444 llama : parameter conversion and loading fixes for PLaMo2 variants (#16075)
* Fix to use hidden_size_per_head

* Fix num heads

* Fix array

* Fix loading weights

* Support old GGUF converted by the previous version of llama.cpp

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Move shared parameter definitions to the outside of loop

* Not calculating n_embd_head_k,v by n_embd / n_head

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-01 23:08:15 +02:00
Bartowski
e74c92e842 model : support GLM 4.6 (make a few NextN/MTP tensors not required) (#16359)
* Make a few GLM tensors not required

layer.nextn.shared_head_head and layer.nextn.embed_tokens are both excluded from GLM 4.6 resulting in the model not loading after conversion/quantization, this marks those tensors as not required which makes it work

* Update llama-model.cpp

layer.nextn.shared_head_norm also not required in case of future models
2025-09-30 22:24:36 +02:00
anavp-nvidia
a014310374 cuda : Enable CUDA Graph usage for Nemotron Nano v2 (NemotronH) (#16328)
* Fix Nemotron Nano v2 9B not executing as CUDA Graph on NVIDIA GPUs

* fix to ensure test-backend-ops check passes
2025-09-30 11:13:22 +03:00
Vinkal
72b24d96c6 model : make minicpm embedding_scale, residual_scale and logit_scale optional with legacy defaults (#16273)
* minicpm: make GGUF scaling keys optional with legacy defaults

Older MiniCPM GGUFs do not include the scaling metadata keys (minicpm.embedding_scale, minicpm.residual_scale, minicpm.logit_scale). The loader currently treats these as required, so quantization fails with:

    key not found in model: minicpm.embedding_scale

This change restores backward compatibility by treating these keys as optional in the loader and using the older MiniCPM scaling values:

    embedding_scale = 12.0f
    residual_scale  = 1.4f / sqrt(n_layer)
    logit_scale     = 256.0f / n_embd

When the GGUF provides the keys, their values override the defaults; otherwise the legacy defaults are used. Newer GGUFs that already include these keys are unaffected.

Fixes: #16192
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

* Update src/llama-model.cpp

Committed as suggested. Thanks!

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-26 23:28:29 +02:00
Aaron Teo
624207e676 devops: add s390x & ppc64le CI (#15925)
* devops: move s390x and ppc64le ci build

we have access to ubuntu-24.04-s390x and ppc64le images now

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le for now since they have compiler errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: stop warnings as errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: switch to non-macro flag

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: going the llama macro route

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add big-endian gguf test models

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le to test s390x, check test build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dup .gguf.inp files for big-endian tests

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dup .gguf.out files for big-endian too

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add python setup and endian byteswap

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: pooring thing does not have s390x python3

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add missing rust compiler for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: try rust actions runner

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "devops: try rust actions runner"

This reverts commit 3f8db04356033d6c1d7eccc75ca396bc5298250c.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: try a different path for rust

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dump home directory and user info

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: install gguf-py only

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: missed relative path

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove big-endian files since local swapping is working

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: revert test-tokenizer-0 cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix unicode flags conversion from and to uint16_t

Bitfields are allocated in different order on s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Simplify byteswap command

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Add byteswapping and git-lfs for test-tokenizers-ggml-vocabs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix endianness detection in vocab loader

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Disable test-thread-safety on s390x

In this test a model is downloaded,
then immediately loaded to check if more downloads are needed,
and then used for test.

There is no clean way to separate all those steps
 to add byteswapping between them, so just skip this test.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix q8_0 test in test-quantize-fns

vec_signed uses unexpected rounding mode.
Explicitly use different rounding function.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add big-endian stories260K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add s390x test-eval-callback

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix test does not exist

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix model not found llama-eval-callback

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix q3_K dot product error in test-quantize-fns on s390x

Array q8bytes had only 4 elements allocated, but 8 elements accessed.
This lead to write out of bounds and later read of overwritten values out of bounds
and incorrect result.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: re-enable ppc64le for testing

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: activate test-thread-safety for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le tests

for some reason it keeps failing test-thread-safety tests and I do not
    have a machine that is able to replicate the tests.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: LLAMA_FATAL_WARNINGS=ON

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Correct repository URL for s390x for test-thread-safety model

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix fs_get_cache_directory

Ensure it works even if both XDG_CACHE_HOME and HOME are unset.
This might happen in containers.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Re-enable CI for ppc64le

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fortify ggml_rope_impl

Only memcpy data from sections argument if it's non-NULL.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Add TODO in struct unicode_cpt_flags to reimplement it in endian-independent way

* Update URL for big-endian model

* Update .github/workflows/build.yml

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update remaining mentions of BE models to ggml-org/models repo

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@linux.ibm.com>
Co-authored-by: Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-27 02:03:33 +08:00
Sigbjørn Skjæret
835b2b915c model : add GroveMoE support (#15510)
* add GroveMoE support

* remove constexpr that fails on certain compilers

* revert crude scalar div implementation, use cast

* build_attn_inp_kv_unified -> build_attn_inp_kv

* fix build_attn

* re-apply ffn_exps regex changes
2025-09-25 19:50:28 +02:00
Aman Gupta
077c94d0ca CUDA: add a fused top-K MoE kernel (#16130)
* CUDA: add a fused top-K MoE kernel

This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory

It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models

* Refactor into ggml_cuda_should_use_topk_moe

* Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before

* Review: format + micro-optimizations

* Fix bug: fix tie breakers

* Add optional norm + clean-up code

* Use smem for final write

* Add bounds check

* Use better memory pattern for writeback
2025-09-25 16:35:05 +02:00
Douglas Hanley
b5bd037832 llama : add support for qwen3 reranker (#15824) 2025-09-25 11:53:09 +03:00
Johannes Gäßler
e789095502 llama: print memory breakdown on exit (#15860)
* llama: print memory breakdown on exit
2025-09-24 16:53:48 +02:00
Tarek Dakhran
3a59971967 model : add label for LiquidAI LFM2-2.6B model (#16204)
* model : add label for LiquidAI LFM2-2.6B model

HF link: [LiquidAI/LFM2-2.6B](https://huggingface.co/LiquidAI/LFM2-2.6B).

Support for GGUF conversion and inference is added in #14620.

However, due to similar `n_embd`, it identifies as a 1.2B model.
Fix the label by using `n_ff` to identify the model instead.

Output of `llama-bench`:
```
| model                          |       size |     params | backend    | threads |            test |                  t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | --------------: | -------------------: |
| lfm2 1.2B F16                  |   2.18 GiB |     1.17 B | CPU        |      10 |           pp512 |        223.97 ± 5.32 |
| lfm2 2.6B F16                  |   4.79 GiB |     2.57 B | CPU        |      10 |           pp512 |         92.53 ± 4.14 |
| lfm2 350M F16                  | 676.25 MiB |   354.48 M | CPU        |      10 |           pp512 |       725.52 ± 11.70 |
| lfm2 700M F16                  |   1.38 GiB |   742.49 M | CPU        |      10 |           pp512 |       336.22 ± 12.93 |
```

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-24 13:42:26 +02:00
Georgi Gerganov
e58174cecb llama : bump max seq limit from 64 to 256 (#15916)
ggml-ci
2025-09-18 12:47:56 +03:00
Xuan-Son Nguyen
8f8f2274ee convert : add Llama4ForCausalLM (#16042)
* convert : add Llama4ForCausalLM

* handle swa

* half working version

* fix use_kq_norm

* fix use_kq_norm
2025-09-17 19:18:21 +02:00
Jie Fu (傅杰)
745cbcf2fe llama-quant : fix the verification of attention layers for encoder-decoder models (#16023)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-17 09:30:55 +02:00
Shane A
85286f3548 model : add OLMo3 support (#16015)
* Add HF to gguf conversion logic for Olmo3

* Add Olmo3 implementation

* Update rope comment

* Fix indentation

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-17 09:01:58 +02:00
Aman Gupta
6d758839ff Add LLaDA-7b-MoE diffusion model (#16003) 2025-09-16 10:38:28 +08:00
Sigbjørn Skjæret
b8e09f08b9 model : add grok-2 support (#15539)
* add grok-2 support

* type fix

* type fix

* type fix

* "fix" vocab for invalid sequences

* fix expert tensor mapping and spaces in vocab

* add chat template

* fix norm tensor mapping

* rename layer_out_norm to ffn_post_norm

* ensure ffn_post_norm is mapped

* fix experts merging

* remove erroneous FFN_GATE entry

* concatenate split tensors and add more metadata

* process all expert layers and try cat instead of hstack

* add support for community BPE vocab

* fix expert feed forward length and ffn_down concat

* commit this too

* add ffn_up/gate/down, unsure if sequence is right

* add ffn_gate/down/up to tensor names

* correct residual moe (still not working)

* mess--

* fix embedding scale being applied twice

* add built in chat template

* change beta fast for grok if default value

* remove spm vocab in favor of community bpe vocab

* change attention temp length metadata type to integer

* update attention temp length metadata

* remove comment

* replace M_SQRT2 with std::sqrt(2)

* add yarn metadata, move defaults to hparams
2025-09-14 23:00:59 +02:00
Haiyue Wang
f4e664f838 context : remove redundant explicit casting to the same type (#15948)
The function 'output_reserve' return type is 'uint32_t', so need to add
explicit casting.
2025-09-12 18:16:32 +03:00
Diego Devesa
360d6533db ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type (#15797)
* ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type

ggml-backend : add device id to device props

llama : only use iGPU devices if there are no GPU devices

llama : do not use multiple devices from different backends with the same device id
2025-09-11 22:47:38 +02:00
ddh0
df082f5630 nitpick : correct MB to MiB (#15934)
MB was incorrectly used for 1024 x 1024 bytes instead of MiB
2025-09-11 19:12:34 +02:00
Jie Fu (傅杰)
4f658855fa llama : support T5 models with unequal number of encoder-decoder layers (#15909)
* Extend the support of T5 models with different encoder-decoder layers

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-hparams.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Rename n_dec_layer --> dec_n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Adapt to cases when dec_n_layer > n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

---------

Signed-off-by: Jie Fu <jiefu@tencent.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-10 20:51:51 +02:00
Sigbjørn Skjæret
6ab397e12b graph : support non-contiguous Q in build_attn_mha (#15908)
* support non-contiguous Q in build_attn_mha

* Update src/llama-graph.cpp

ggml-ci

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-10 19:08:59 +02:00
Daniel Bevenius
86587da03b llama : check returned fn ptrs from ggml_backend_reg_get_proc_address (#15893)
This commit adds check for two function pointers returned from
ggml_backend_reg_get_proc_address.

The motivation for this is that the function pointer could be nullptr if
the get proc address function changes in the future. This is also
consistent with all the other calls to ggml_backend_reg_get_proc_address
in the code base.
2025-09-10 05:33:58 +02:00
Georgi Gerganov
663027fd54 context : fix n_outputs during reserve (#15858)
ggml-ci
2025-09-08 10:26:36 +03:00
Georgi Gerganov
cf0e3ba150 model : avoid ggml_cont_3d for fused QKV weights (#15662)
* model : avoid ggml_cont_3d for fused QKV weights

ggml-ci

* kv-cache : make cpy_k and cpy_v implementation more readable

ggml-ci

* cont : add comments

ggml-ci

* cont : minor fix [no ci]

* cont : one more fix

* cont : clarity

ggml-ci

* kv-cache : require contiguous heads of k_cur and v_cur

ggml-ci
2025-09-08 10:25:33 +03:00
Gabe Goodhart
fd621880f3 aLoRA Support (#15327)
* feat: Add python-side constants and conversion for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add c++ side constants for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse invocation string for adapters from GGUF

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(python): Update conversion to alora_invocation_tokens

This is the preferred method in PEFT which is the source of ground truth

https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(cpp): Update to alora_invocation_tokens on c++ side

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add C APIs to get alora invocation token array from lora

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Initial implementation of alora cache logic in server

This does not yet do the part to identify the invocation tokens and only
apply the lora adapter afterwards, but it does seem to produce correct
results if the invocation tokens are the beginning of the uncached input.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Identify alora invocation sequences

This currently limits to a single enabled alora per slot. Multiple aloras
with different invocation sequences would be possible, but it would require
a more complex integration of the adapter toggling and is not really a well
studied case for alora since it's unclear if one alora can reuse cache from
previous prefill computed with a different alora.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Only reuse cache for tokens before the alora invocation start

This is a bit of an edge case, but theoretically a user could try the same
query with the alora disabled (just using the base model), then retry with
the alora. The cached tokens from the first pass should be invalid.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Handle un-cached tokens that come before the alora activation

The solution is to only fill up to the token before the invocation start in
the batch if there are any tokens to be prefilled between those pulled from
cache and the invocation start. When this is detected, the alora is
temporarily disabled with a scale of 0.0, then immediately re-enabled after
it has been initialized for the internal graph. Since the batch does not
complete the prompt tokens, the remaining prompt tokens are handled in the
next task, pulling all of the non-alora tokens from cache and proceeding
with prefill for the alora tokens.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use || instead of 'or'

Too much python 🤦

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix off-by-one for limiting cached tokens to before alora start

This was the cause of the inconsistent results from the dummy test script
with and without the turn that runs the prompt without the adapter before
running it with the adapter.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Support backwards-compatibility for "invocation_string" in adapter_config.json

While this has been replaced in the PEFT PR in favor of
alora_invocation_tokens, the existing adapters in the ibm-granite org on HF
use "invocation_string," so this will enable backwards compatibility and
enable testing now (before PEFT PR changes have percolated everywhere).

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove duplicate logging

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-05 17:32:39 -06:00
Georgi Gerganov
c610b6c11b kv-cache : fix SWA checks + disable cacheless iSWA (#15811)
ggml-ci
2025-09-05 10:39:22 +03:00
Daniel Bevenius
fb15d649ed llama : add support for EmbeddingGemma 300m (#15798)
This commit add support for the EmbeddingGemma 300m. This model supports
sliding window attention (SWA) and a new swq_type is introduced to
support symmetric SWA masking.

This commit also extracts the code from the function
llama_is_masked_swa in llama-impl.h, so that the logic can be shared
by both llm_graph_input_attn_no_cache::set_input and
llama_kv_cache::set_input_kq_mask.

With this commit the EmbeddingGemma 300m model can be converted to
to GGUF and used with llama.cpp.

Once the model has been uploaded to HuggingFace it can be used like
this:
```console
./build/bin/llama-cli -hf ggml-org/embeddinggemma-300m-GGUF:Q8_0
```
2025-09-04 18:10:29 +02:00
Daniel Bevenius
d1e2adba65 llama : set n_outputs to 1 to avoid 0 outputs mean-pooling (#15791)
* llama : set n_outputs to 1 to avoid 0 outputs mean-pooling

This commit modifies the llama_context constructor to set n_outputs to
1.

The motivation for this is that when using pooling, and specifically
mean pooling, for embeddings having n_outputs set to 0 can lead to the
following error:
```console
$ build/bin/llama-embedding -m models/nomic-embed-text-1.5-Q4_K_M.gguf \
   --pooling mean -p "Hello, how are you?"
...
llama_context:        CPU  output buffer size =     0.12 MiB
/home/danbev/work/ai/llama.cpp/ggml/src/ggml.c:3023: GGML_ASSERT(ggml_can_mul_mat(a, b)) failed
0x0000743c96d107e3 in __GI___wait4 (pid=292978, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30	../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
30	in ../sysdeps/unix/sysv/linux/wait4.c
196	        waitpid(child_pid, NULL, 0);
230	        ggml_print_backtrace();
3023	    GGML_ASSERT(ggml_can_mul_mat(a, b));
1823	                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
18983	    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
1399	    auto * gf = model.build_graph(gparams);
292	            auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true);
2329	        auto * ctx = new llama_context(*model, params);
913	    llama_context * lctx = llama_init_from_model(model, cparams);
105	    common_init_result llama_init = common_init_from_params(params);
[Inferior 1 (process 292976) detached]
Aborted (core dumped)
```

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add comment about not reserving graphs with zero outputs

* add assert in graph_reserve to ensure n_outputs >= 1

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-04 15:40:44 +02:00
Georgi Gerganov
cdedb70a99 sampling : optimize dist sampler (#15704)
ggml-ci
2025-09-03 18:16:26 +03:00
Daniel Bevenius
2c8dac72eb llama : fix incorrect model type for Gemma 270M (#15764)
This commit fixes the model type for the Gemma 270M model in
llama_model.cpp which should be LLM_TYPE_270M. I incorrectly added this
previously as LLM_TYPE_537M which was wrong.

The motivation for this is that it causes the model to not be identified
properly when using tools like llama-bench. For example:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
```

With the changes in this commit the output will be:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
```
2025-09-03 13:35:49 +02:00
Georgi Gerganov
e92d53b29e sampling : optimize samplers by reusing bucket sort (#15665)
* sampling : optimize sorting using bucket sort in more places

ggml-ci

* sampling : do not sort in dist sampler

ggml-ci

* sampling : avoid heap allocations for sort buffers

ggml-ci

* common : add option to sort sampling candidates by probability

ggml-ci

* sampling : revert the change for preserving sort buffers

* sampling : use std::copy instead of memcpy

* sampling : clarify purpose of partial sort helpers

ggml-ci

* cont : remove wrong comment [no ci]

* common : update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-31 20:41:02 +03:00
Diego Devesa
274966226f llama : fix fattn reserve call n_seqs parameter (#15699)
ggml-ci
2025-08-31 18:47:05 +03:00
Diego Devesa
9777032dcc llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Johannes Gäßler
e81b8e4b7f llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
2025-08-30 16:32:10 +02:00
Gabe Goodhart
e8d99dd0b6 nvidia nemotron nano v2 (nemotronh) (#15507)
* feat: Add NEMOTRONH to python arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to c++ arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to llama-arch layer map

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at conversion for nemotronh

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add a verbose log for each tensor loaded

This is really helpful for diagnosing mismatches between the expected and
received tensors

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at nemotronh model architecture

It generates tokens, just not valid ones!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Explicitly enable add_bos_token during conversion

The `tokenizer.json`/`tokenizer_config.json` in the model are a bit
contradictory. In the config, add_bos_token is set to False, but the
tokenizer model itself has a post_processor that adds the BOS token via
type: TemplateProcessing

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use relu2 (LLM_FFN_RELU_SQR) for activation in FFN layers

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only allocate attention cache for attention layers (not non-recurrent)

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Move residual add to after every block

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the correct norm tensor for the MLP blocks

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Nemotron-H: MLP gate cleanup (pass NULL for unused gate)

This model does not use a gate in MLP blocks; pass NULLs for gate tensors to make intent clear and avoid unused-pointer noise.

* SSM: respect ssm_dt_rank for dt_dim when provided

Use GGUF-provided time_step_rank (ssm_dt_rank) to set dt_dim when > 0; fallback to max(64, n_embd/16).

* fix: plamo2 - revert dt_dim to default (remove ssm_dt_rank usage)

* Rename nemotronh to nemotron_h for consistency

- Update architecture name from NEMOTRONH to NEMOTRON_H in constants.py
- Change architecture string from 'nemotronh' to 'nemotron_h' in all files
- Update enum LLM_ARCH_NEMOTRONH to LLM_ARCH_NEMOTRON_H
- Update class name llm_build_nemotronh to llm_build_nemotron_h
- Consistent naming with underscore convention (nemotron_h vs nemotronh)

* feat: Support conversion for older NemotronH models

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Maicon Domingues <dominguesm@outlook.com>
Co-authored-by: weatherman <fxdstudios@gmail.com>
2025-08-28 18:39:31 -06:00
Georgi Gerganov
c8d0d14e77 kv-cache : fix find_slot to not search for continuous slot (#15638)
ggml-ci
2025-08-28 17:09:05 +03:00
Sigbjørn Skjæret
84ab83cc0b model : jina-embeddings-v3 support (#13693)
* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* fix vocab parsing with only tokenizer.json

* set mask token lstrip attribute

* additional unk_token_id fallback just in case [no ci]

* revert vocab_size() change [no ci]

* merge tensor loading into general bert

* rope

* add lora embedding and loading (non-functional)

* export separate lora ggufs instead

* add adapter metadata api

* use std::string

* convert_hf_to_lora compatibility

* fix assert

* apply suggestions from review

* apply suggestion from review
2025-08-28 15:49:50 +02:00
Georgi Gerganov
8a4280ce43 kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
Georgi Gerganov
1bded5a3b3 kv-cache : better estimate of n_kv for multi-sequence batches (#15610)
ggml-ci
2025-08-27 13:55:12 +03:00
Georgi Gerganov
0373486dbc graph : fix assert in memory-less build_attn (#15590)
ggml-ci
2025-08-26 17:45:17 +03:00
Georgi Gerganov
85cc1ae998 context : print graph stats for memory-less contexts (#15586)
ggml-ci
2025-08-26 12:47:00 +03:00
Georgi Gerganov
b730706a49 kv-cache : support layer reuse (#15504)
* kv-cache : support layer reuse

ggml-ci

* cont : update comments [no ci]
2025-08-24 13:07:07 +03:00
Piotr Wilkin (ilintar)
b1afcab804 model : add support for Seed-OSS (#15490)
* First draft

* Fix linter errors

* Added missing sinks nullptr

* Don't forget the llama-arch!

* We're through to the generation stage.

* Fix post-attention norm

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix RoPE type

* Fix tensor name and reorder llm_types

* Update gguf-py/gguf/constants.py

Remove nonexistent FFN_POST_NORM tensor

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add basic chat template

* Add chat template tests

* Remake chat template test

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Reorder llm type descriptions

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-23 15:21:52 +02:00
LaffeyNyaa
21dc4ddaf2 chat : fix debug build assertion in trim function (#15520) 2025-08-23 10:38:30 +02:00