Applies to both local and remote safetensors custom parsing.
This matches the behavior of the official safetensors implementation.
* convert : rename from_safetensors_meta to from_local_tensor
For consistency with from_remote_tensor
* Added GGUF mappings for CogVLM model
* Add tensor mapping for CogVLM visual encoder
* Add CogVLM to conversion script, no vision part yet
* Added CogVLM vision model to conversion script
* Add graph for CogVLM CLIP model
* Add graph for CogVLM
* Fixes for CogVLM. Now compiles.
* Model now runs
* Fixes for cogvlm graph
* Account for graph context change after rebase
* Changes for whitespace
* Changes in convert script according to comments
* Switch CogVLM LLM graph to merged QKV tensor
* Use rope_type variable instead of direct definition
* Change CogVLM CLIP encoder to use SWIGLU
* Switch CogVLM CLIP to use merged QKV
* Apply rebase edits and remove ggml_cont call that is now unnecessary
* clean up
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* add BailingMoeV2 support
* update llm types
* undo
* undo
* update llm types
* add model collection link
* update
* almost working
* correct group selection and rename n_group_exp
* avoid large top_k and use argmax instead for now
if we had something like argmax2 that would be equivalent, but this works fine until then
* poke
* skip group selection when there are no tokens
* fix 1T conversion
* hopefully fixed expert group selection
third time's the charm?
* make expert group selection generally available
The new LLaDA2Moe model uses this method too, make it generally available regardless of architecture.
* allow n_expert_groups to be 1 (Kimi K2)
* address review suggestions
BF16 requires special handling in this script
while it's a 2-bytes data, but view is 1-byte by default.
Switch to correct view before attempting byteswapping.
With this change correctly byteswapping models like
Meta-Llama-3-8B-Instruct-bf16-GGUF
should be possible.
* model: EmbeddingGemma sentence-transformers dense linear projections support
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
Adding support for the Dense modules used in EmbeddingGemma models.
EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone.
See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
- converting model with dense-layers is optional
- introduced dense config params
* Update convert_hf_to_gguf.py
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* fixed formatting issues
* Update src/llama-graph.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* - removed pooling_type_opt, always allow overriding pooling_type
- asserts checking dense features dims
* fix python lint
* fix ubuntu gcc build warning
* - fixed thread-safety test
- moved asserts to load_hparams
* - tidying up code
- simplifying graph-context expecting both dense weights
* minor : add TODO
---------
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* feat: Add granite-docling conversion using trillion pretokenizer
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add granite-docling vocab pre enum
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use granite-docling pre
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add clip_is_idefics3
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Allow multi-token boundary sequences for image templating
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add tiling support for idefices3 in clip.cpp
This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Partial support for full templating for idefics3 in mtmd
There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Fully working image preprocessing for idefics3 w/ resize and slicing
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use the longest side instead of size * scale_factor
For Granite Docling, these come out to the same value, but that was just a
conicidence.
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Allow batch encoding and remove clip_is_idefics3
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Remove unnecessary conditionals for empty token vectors
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Use image_manipulation util
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* add test model
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* First attempt
* No permute during convert (fixes qk tensors), proper norm application.
* RoPE = NeoX
* Coherence!
* Migrate xielu params from tensors to hyperparameters
* Simple CUDA kernel
* Revert stupid LLM refactorings
* Chat template support
* configchecker / flake8 errors
* Reorder unary.cu
* I do conclude that LLMs are, in fact, stupid.
* Fix after merge
* Final newline
* Make xIELU an UNARY_OP
* Final newline
* Correctly account for parameter shift
* Argh.
* Update ggml/src/ggml-cpu/unary-ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Refactor: remove unused methods, inline and factorize softplus, add const modifiers
* Revert CUDA changes, implement xIELU as a separate OP
* Pesky newline
* Add float2half / half2float for F16 inputs/outputs
* CUDA variants, attempt 2
* Actually, attempt 3
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Missing convert header
* Proper formula and reference for xIELU in the comments.
* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Add tensor mappings for Apertus to global list instead
* Fix lazy on scalars
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Add comment about the constraints on positive/negative alpha
* Change `softplus` to `ggml_softplus`
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* add grok-2 support
* type fix
* type fix
* type fix
* "fix" vocab for invalid sequences
* fix expert tensor mapping and spaces in vocab
* add chat template
* fix norm tensor mapping
* rename layer_out_norm to ffn_post_norm
* ensure ffn_post_norm is mapped
* fix experts merging
* remove erroneous FFN_GATE entry
* concatenate split tensors and add more metadata
* process all expert layers and try cat instead of hstack
* add support for community BPE vocab
* fix expert feed forward length and ffn_down concat
* commit this too
* add ffn_up/gate/down, unsure if sequence is right
* add ffn_gate/down/up to tensor names
* correct residual moe (still not working)
* mess--
* fix embedding scale being applied twice
* add built in chat template
* change beta fast for grok if default value
* remove spm vocab in favor of community bpe vocab
* change attention temp length metadata type to integer
* update attention temp length metadata
* remove comment
* replace M_SQRT2 with std::sqrt(2)
* add yarn metadata, move defaults to hparams
* feat: Add python-side constants and conversion for adapter.lora.invocation_string
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add c++ side constants for adapter.lora.invocation_string
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Parse invocation string for adapters from GGUF
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(python): Update conversion to alora_invocation_tokens
This is the preferred method in PEFT which is the source of ground truth
https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(cpp): Update to alora_invocation_tokens on c++ side
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add C APIs to get alora invocation token array from lora
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Initial implementation of alora cache logic in server
This does not yet do the part to identify the invocation tokens and only
apply the lora adapter afterwards, but it does seem to produce correct
results if the invocation tokens are the beginning of the uncached input.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Identify alora invocation sequences
This currently limits to a single enabled alora per slot. Multiple aloras
with different invocation sequences would be possible, but it would require
a more complex integration of the adapter toggling and is not really a well
studied case for alora since it's unclear if one alora can reuse cache from
previous prefill computed with a different alora.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Only reuse cache for tokens before the alora invocation start
This is a bit of an edge case, but theoretically a user could try the same
query with the alora disabled (just using the base model), then retry with
the alora. The cached tokens from the first pass should be invalid.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Handle un-cached tokens that come before the alora activation
The solution is to only fill up to the token before the invocation start in
the batch if there are any tokens to be prefilled between those pulled from
cache and the invocation start. When this is detected, the alora is
temporarily disabled with a scale of 0.0, then immediately re-enabled after
it has been initialized for the internal graph. Since the batch does not
complete the prompt tokens, the remaining prompt tokens are handled in the
next task, pulling all of the non-alora tokens from cache and proceeding
with prefill for the alora tokens.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use || instead of 'or'
Too much python 🤦
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix off-by-one for limiting cached tokens to before alora start
This was the cause of the inconsistent results from the dummy test script
with and without the turn that runs the prompt without the adapter before
running it with the adapter.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Support backwards-compatibility for "invocation_string" in adapter_config.json
While this has been replaced in the PEFT PR in favor of
alora_invocation_tokens, the existing adapters in the ibm-granite org on HF
use "invocation_string," so this will enable backwards compatibility and
enable testing now (before PEFT PR changes have percolated everywhere).
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove duplicate logging
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit add support for the EmbeddingGemma 300m. This model supports
sliding window attention (SWA) and a new swq_type is introduced to
support symmetric SWA masking.
This commit also extracts the code from the function
llama_is_masked_swa in llama-impl.h, so that the logic can be shared
by both llm_graph_input_attn_no_cache::set_input and
llama_kv_cache::set_input_kq_mask.
With this commit the EmbeddingGemma 300m model can be converted to
to GGUF and used with llama.cpp.
Once the model has been uploaded to HuggingFace it can be used like
this:
```console
./build/bin/llama-cli -hf ggml-org/embeddinggemma-300m-GGUF:Q8_0
```
* gguf-py: implement byteswapping for Q4_0
This is needed to byteswap Mistral model.
Also restore original shapes after byteswapping tensors.
It is not needed at the moment, but do it in case
they'd be used in future.
* Rework byteswapping code in gguf-py
Move out details from byteswapping tensor blocks code
* convert : fix tensor naming conflict for llama 4 vision
* convert ok
* support kimi vision model
* clean up
* fix style
* fix calc number of output tokens
* refactor resize_position_embeddings
* add test case
* rename build fn
* correct a small bug
* wip lfm2 vision model
* Fix conv weight
* Implement dynamic resolution
* Fix cuda
* support LFM2-VL-450M
* happy CI
* Remove extra `ggml_conv` and put others into the right place
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Add support for Llada-8b: diffusion model
* Add README
* Fix README and convert_hf_to_gguf
* convert_hf_to_gguf.py: address review comments
* Make everything in a single example
* Remove model-specific sampling
* Remove unused argmax
* Remove braced initializers, improve README.md a bit
* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps
* Remove adding the mask token
* Move add_add_bos_token to set_vocab
* use add_bool in gguf_writer.py
* support smallthinker
* support 20b softmax, 4b no sliding window
* new build_moe_ffn_from_probs, and can run 4b
* fix 4b rope bug
* fix python type check
* remove is_moe judge
* remove set_dense_start_swa_pattern function and modify set_swa_pattern function
* trim trailing whitespace
* remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* better whitespace
Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* use GGML_ASSERT for expert count validation
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Improve null pointer check for probs
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* use template parameter for SWA attention logic
* better whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* move the creation of inp_out_ids before the layer loop
* remove redundant judge for probs
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* imatrix : allow processing multiple chunks per batch
* perplexity : simplify filling the batch
* imatrix : fix segfault when using a single chunk per batch
* imatrix : use GGUF to store imatrix data
* imatrix : fix conversion problems
* imatrix : use FMA and sort tensor names
* py : add requirements for legacy imatrix convert script
* perplexity : revert changes
* py : include imatrix converter requirements in toplevel requirements
* imatrix : avoid using designated initializers in C++
* imatrix : remove unused n_entries
* imatrix : allow loading mis-ordered tensors
Sums and counts tensors no longer need to be consecutive.
* imatrix : more sanity checks when loading multiple imatrix files
* imatrix : use ggml_format_name instead of std::string concatenation
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* quantize : use unused imatrix chunk_size with LLAMA_TRACE
* common : use GGUF for imatrix output by default
* imatrix : two-way conversion between old format and GGUF
* convert : remove imatrix to gguf python script
* imatrix : use the function name in more error messages
* imatrix : don't use FMA explicitly
This should make comparisons between the formats easier
because this matches the behavior of the previous version.
* imatrix : avoid returning from void function save_imatrix
* imatrix : support 3d tensors with MUL_MAT
* quantize : fix dataset name loading from gguf imatrix
* common : move string_remove_suffix from quantize and imatrix
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* imatrix : add warning when legacy format is written
* imatrix : warn when writing partial data, to help guess dataset coverage
Also make the legacy format store partial data
by using neutral values for missing data.
This matches what is done at read-time for the new format,
and so should get the same quality in case the old format is still used.
* imatrix : avoid loading model to convert or combine imatrix
* imatrix : avoid using imatrix.dat in README
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Support diffusion models: Add Dream 7B
* Move diffusion to examples
* Move stuff to examples. Add patch to not use kv-cache
* Address review comments
* Make sampling fast
* llama: remove diffusion functions
* Add basic timings + cleanup
* More cleanup
* Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length
* fixup!
* Review: move everything to diffusion-cli for now
* Add PLaMo-2 model using hybrid memory module
* Fix z shape
* Add cmath to include from llama-vocab.h
* Explicitly dequantize normalization weights before RoPE apply
* Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing
* Use ATTN_K/Q_NORM for k,q weights to prevent quantization
* Remove SSM_BCDT that is not used from anywhere
* Do not duplicate embedding weights for output.weight
* Fix tokenizer encoding problem for multibyte strings
* Apply suggestion from @CISC
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up
* Remove unnecessary part for Grouped Query Attention
* Fix how to load special token id to gguf
* Remove unused tensor mapping
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations
* Update src/llama-vocab.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Fix plamo2 tokenizer session to prevent multiple calls of build()
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>