Commit Graph

342 Commits

Author SHA1 Message Date
Jonathan Graehl
5cdb27e091 finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
uvos
29c8fbe4e0 HIP: bump requirement to rocm 6.1 (#15296) 2025-08-13 20:44:30 +02:00
Oliver Simons
6028bf7435 CUDA: Optimize reduce_rows_f32 kernel, leading up to 25x perf improvement on kernel-level and 10% perf increase for Gemma3n (#15132)
* Factor out `reduce_rows_f32` from common.cuh

This increases iteration cycle speed by not having to recompile
every kernel all the time

* Hide memory-latency by loop unrolling in reduce_rows_f32

* Further optimizations to `reduce_rows_f32`

1. Increase threadblock size to better hide latency of memory requests.
   As a consequence of bigger threadblocks, do 2-step summation, using
   shared memory to communicate results between invocations
2. Use sum_temp array to reduce waits on sum
3. Adjust num_unroll to reflext bigger threadblock
4. Improve default block_dims, increase support for more block_dims

* Add perf tests for `reduce_rows_f32` kernel

* Add heuristic to toggle 128/512 threads based on sm count

Break even point was the minimum of the following multiples.

| GPU Model                     | Nrow SM Count Multiple |
| -----------                   | -----------            |
| RTX 4000 SFF ADA              | 2.0x                   |
| RTX 6000 ADA                  | 2.5x                   |
| RTX PRO 6000 Blackwell Max-Q  | 3.04x                  |
| RTX PRO 4500 Blackwell	| 3.15x                  |

* Ensure perf gains also for small ncols and large nrows

Alternative to this, one could have also made the number of unrollings
template-able, but that would require compiling the kernel multiple
times, increasing binary size unnecessarily

* Modify perf and unit-tests

* Apply auto-formatting by clang

* Fix CI build failure

See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486
Building with VS generator worked though.

* Remove sm_count property from `ggml_backend_cuda_context`

Requested by @JohannesGaessler, and should fix remaining CI issues as a
side-effect

* Add CUB-based implementation for GGML_OP_MEAN

Currently this branch is only executed for nrows==1

* Add heuristics to execute CUB branch only when it brings perf

Heuristics were determined on the following HW:

* RTX 4000 SFF ADA
* RTX 6000 ADA
* RTX PRO 6000 Blackwell Max-Q
* RTX PRO 4500 Blackwell

* Add unit-test for CUB-based mean

Tests should run with CUDA Graphs enabled per default on NVGPUs

* Rename `USE_CUB` to `GGML_CUDA_USE_CUB`

Suggested by @JohannesGaessler

* Unindent Preprocessor directives

See
https://github.com/ggml-org/llama.cpp/pull/15132#discussion_r2269213506
2025-08-13 10:04:46 +02:00
uvos
b0493156fa HIP: disable sync warp shuffel operators from clr amd_warp_sync_functions.h (#15273) 2025-08-12 22:15:12 +02:00
Aman Gupta
efe3a90996 CUDA cmake: add -lineinfo for easier debug (#15260) 2025-08-12 17:21:45 +08:00
R0CKSTAR
25ff6f7659 musa: fix failures in test-backend-ops for mul_mat_id op (#15236)
* musa: fix failures in test-backend-ops for mul_mat_id op

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-08-12 10:02:51 +08:00
David Zhao
79c1160b07 cuda: refactored ssm_scan and use CUB (#13291)
* cuda: refactored ssm_scan to use CUB

* fixed compilation error when when not using CUB

* assign L to constant and use size_t instead of int

* deduplicated functions

* change min blocks per mp to 1

* Use cub load and store warp transpose

* suppress clang warning
2025-08-09 20:29:43 +02:00
Aman Gupta
34c9d765bf CUDA: add attention sinks for tile and wmma (#15178)
* CUDA: add attention sinks for tile and wmma

* Review: formatting changes + remove syncthreads from tile + remove warp_reduce_max from wmma
2025-08-09 20:00:24 +08:00
AN Long
cd6983d56d ggml : fix field name when new ggml_backend (#14944) 2025-08-08 14:37:22 +02:00
Johannes Gäßler
1425f587a8 CUDA: attention sinks for mma FlashAttention (#15157) 2025-08-08 08:19:58 +02:00
Johannes Gäßler
1d72c84188 CUDA: GEMM for FP32/FP16/BF16 and ne11 <= 16 (#15131)
* CUDA: GEMM for FP32/FP16/BF16 and ne11 <= 16
2025-08-07 10:53:21 +02:00
Georgi Gerganov
fd1234cb46 llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Johannes Gäßler
03d4698218 CUDA: use mma FA kernel for gqa > 4 on RTX 4000 (#15035) 2025-08-02 16:37:08 +02:00
leejet
3303c19b16 cuda: make im2col a little faster (#15025) 2025-08-02 17:15:36 +03:00
Georgi Gerganov
15e92fd337 cuda, sycl : fix batched gemm when ne02 == 1 && ne03 > 1 (#15038)
* cuda, sycl : fix batched gemm when ne02 == 1 && ne03 > 1

ggml-ci

* cont : fix cont types

ggml-ci

* cont : adopt variable names and comment from the other branch
2025-08-02 17:13:05 +03:00
Johannes Gäßler
9c35706b98 CUDA: fix MMQ nwarps for AMD with warp_size==32 (#15014) 2025-08-01 20:47:32 +02:00
uvos
ad4a700117 HIP: enable mfma mmq on gfx908 and gfx90a for select datatypes and shapes (#14949) 2025-07-30 17:38:06 +02:00
Johannes Gäßler
92b8810ec7 CUDA: skip masked KV slices for all FA kernels (#14924) 2025-07-30 15:46:13 +02:00
uvos
aa79524c51 HIP: remove the use of __HIP_PLATFORM_AMD__, explicitly support only AMD targets (#14945) 2025-07-29 20:23:04 +02:00
uvos
b77d11179d HIP: add GGML_HIP_MMQ_MFMA option to allow disableing the MFMA path. (#14930)
This is useful for testing for regressions on GCN with CDNA hardware.

With GGML_HIP_MMQ_MFMA=Off and GGML_CUDA_FORCE_MMQ=On we can conveniently test the GCN code path on CDNA. As CDNA is just GCN renamed with MFMA added and limited use ACC registers, this provides a good alternative for regression testing when GCN hardware is not available.
2025-07-29 17:44:30 +02:00
uvos
c7aa1364fd HIP: Ignore unsupported unroll transformation in fattn-vec (#14931)
llvm with the amdgcn target dose not support unrolling loops with conditional break statements, when those statements can not be resolved at compile time. Similar to other places in GGML lets simply ignore this warning.
2025-07-29 17:43:43 +02:00
Sigbjørn Skjæret
138b288b59 cuda : add softcap fusion (#14907) 2025-07-29 14:22:03 +02:00
Aman Gupta
0a5036bee9 CUDA: add roll (#14919)
* CUDA: add roll

* Make everything const, use __restrict__
2025-07-29 14:45:18 +08:00
Johannes Gäßler
946b1f6859 CUDA: fix pointer incrementation in FA (#14916) 2025-07-28 14:30:22 +02:00
deepsek
66906cd82a HIP: Enable Matrix cores for MMQ Kernels, Enable stream-K for CDNA 3 (#14624)
This commit adds support for MFMA instructions to MMQ. CDNA1/GFX908 CDNA2/GFX90a and CDNA3/GFX942 are supported by the MFMA-enabled code path added by this commit. The code path and stream-k is only enabled on CDNA3 for now as it fails to outperform blas in all cases on the other devices.
Blas is currently only consistently outperformed on CDNA3 due to issues in the amd-provided blas libraries.
This commit also improves the awareness of MMQ towards different warp sizes and as a side effect improves the performance of all quant formats besides q4_0 and q4_1, which regress slightly, on GCN gpus.
2025-07-27 00:28:14 +02:00
R0CKSTAR
9b8f3c6c77 musa: fix build warnings (unused variable) (#14869)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-07-26 10:36:02 +08:00
R0CKSTAR
3f4fc97f1d musa: upgrade musa sdk to rc4.2.0 (#14498)
* musa: apply mublas API changes

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: update musa version to 4.2.0

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: restore MUSA graph settings in CMakeLists.txt

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: disable mudnnMemcpyAsync by default

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: switch back to non-mudnn images

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* minor changes

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: restore rc in docker image tag

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-07-24 20:05:37 +01:00
Johannes Gäßler
a86f52b285 CUDA: fix overflow in FA, tune performance (#14840) 2025-07-23 21:43:25 +02:00
Johannes Gäßler
b284197df4 CUDA: fix compilation with GGML_CUDA_F16 (#14837) 2025-07-23 18:22:30 +02:00
Johannes Gäßler
07a19e27a2 CUDA: fix quantized KV cache + multiple sequences (#14822)
* CUDA: fix quantized KV cache + multiple sequences

* Update ggml/src/ggml-cuda/fattn-common.cuh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-23 14:08:09 +03:00
Aman Gupta
8c988fa41d CUDA: add fused rms norm (#14800) 2025-07-23 09:25:42 +08:00
Sigbjørn Skjæret
e28c0b80c2 cuda : implement bf16 cpy ops and enable bf16 cont (#14763)
* implement bf16 cpy ops and enable bf16 cont

* deduplicate copy functions

* deduplicate checks
2025-07-22 12:33:10 +02:00
R0CKSTAR
48b86c4fdb cuda: remove linking to cublasLt (#14790)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-07-22 07:45:26 +08:00
Jeff Bolz
c2e058f1b4 vulkan/cuda: Fix im2col when KW!=KH (#14789)
The tid is decomposed into "ow + ky*OW + kx*OW*KH". Change "ksize" to match.
2025-07-21 13:35:40 +02:00
Oliver Simons
021cc28bef cuda : Fix Gemma3n not executed as CUDA_GRAPH on NVGPUs (#14741)
* Fix Gemma3n not executed as CUDA_GRAPH on NVGPUs

Gemma3n uses Matrix-Matrix addition as part of their input processing,
wrongly triggering CUDA_GRAPH disablement on NVGPUs even when batch-size
of 1 is used.

* Exclude `project_per_layer_input` by matching node names

This ensures that all other graphs which don't exhibit this pattern do
not have their behavior changed.

* Revert unnecessary formatting changes
2025-07-18 04:35:32 -07:00
Aman Gupta
f9a31eea06 CUDA: set_rows + cpy.cu refactor (#14712) 2025-07-18 14:54:18 +08:00
Georgi Gerganov
225e7a1438 llama : add high-throughput mode (#14363)
* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-16 16:35:42 +03:00
R0CKSTAR
cbc68be51d cuda: fix build warnings in set-rows.cu (unused variable) (#14687)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-07-15 15:28:53 +08:00
Sigbjørn Skjæret
923e3ea2e3 cuda : add set rows for bf16 (#14664) 2025-07-13 15:01:24 +02:00
Yavor Ivanov
e743cddb60 cuda : add ELU support (#14657) 2025-07-13 11:33:16 +02:00
Georgi Gerganov
05fec5bd29 ggml : add build-time message to remind about ggml_set_rows (#14661)
ggml-ci
2025-07-13 10:36:33 +03:00
Aman Gupta
7de5c7cab6 CUDA: add set rows for f32 and f16 (#14551)
* CUDA: add set rows for f32 and f16

* Review: change kernel params, use strides from host

* Use 1-d kernel

* Review: use int64_t for blockDim.x, rename nb->s for clarity
2025-07-12 16:31:38 +03:00
Tarek Dakhran
f5e96b368f model : support LiquidAI LFM2 hybrid family (#14620)
**Important**
LFM2 was [merged ](https://github.com/huggingface/transformers/pull/39340)into transformers, but has not yet been released.
To convert into gguf, install transformers from source
```shell
pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
```
2025-07-11 20:27:01 +02:00
Slobodan Josic
756aa1020a HIP : Add HIP 7.0+ compatibility for hipBLAS compute types (#14634) 2025-07-11 18:55:00 +02:00
compilade
a57d1bcb3c cuda : support Falcon-H1 state size for SSM_SCAN (#14602) 2025-07-09 23:54:38 -04:00
Xuan-Son Nguyen
98bab638fb ggml : add ggml_scale_bias (#14417)
* ggml : add ggml_scale_bias

* ggml_vec_mad1_f32

* add more simd

* add CUDA

* sycl

* vulkan

* cann (placeholder)

* opencl

* will this fix cpu?

* fix cuda

* suggestions from coderabbit

* fix cann compile error

* vDSP_vsmsa

* rm __ARM_FEATURE_SVE

* use memcpy for op params

* make code looks more consistent

* use scalar for __ARM_FEATURE_SVE

* add x param to ggml_vec_mad1_f32
2025-07-09 18:16:12 +02:00
Georgi Gerganov
4d0dcd4a06 cuda : fix rope with partial rotation and non-cont src (#14580)
* cuda : fix rope non-cont

ggml-ci

* cont : fix multi-rope + add test

ggml-ci

* sycl : try fix

ggml-ci

* cont : fix sycl + clean-up cuda

ggml-ci
2025-07-08 10:15:21 +03:00
Aman Gupta
75c91de6e9 CUDA: add bilinear interpolation for upscale (#14563) 2025-07-08 10:11:18 +08:00
R0CKSTAR
68155c66f0 musa: fix build warnings (unused variable) (#14561)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-07-08 07:58:30 +08:00
Aman Gupta
b9c3eefde1 CUDA: add bf16 and i32 to getrows (#14529) 2025-07-07 21:45:43 +08:00