Commit Graph

502 Commits

Author SHA1 Message Date
Jeff Bolz
611f419cff vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Piotr Wilkin (ilintar)
b1afcab804 model : add support for Seed-OSS (#15490)
* First draft

* Fix linter errors

* Added missing sinks nullptr

* Don't forget the llama-arch!

* We're through to the generation stage.

* Fix post-attention norm

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix RoPE type

* Fix tensor name and reorder llm_types

* Update gguf-py/gguf/constants.py

Remove nonexistent FFN_POST_NORM tensor

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add basic chat template

* Add chat template tests

* Remake chat template test

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Reorder llm type descriptions

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-23 15:21:52 +02:00
Acly
0a9b43e507 vulkan : support ggml_mean (#15393)
* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
2025-08-23 08:35:21 +02:00
Johannes Gäßler
e92734d51b test-opt: allow slight inprecision (#15503) 2025-08-22 23:47:01 +02:00
rmatif
92f7f0a53c ggml: add conv3d op (#15182)
* add conv3d

* bump GGML_OP_COUNT
2025-08-22 15:33:15 +02:00
Jeff Bolz
96452a3fa4 vulkan: Reuse conversion results in prealloc_y (#15410)
* vulkan: Reuse conversion results in prealloc_y

Cache the pipeline and tensor that were most recently used to fill prealloc_y,
and skip the conversion if the current pipeline/tensor match.

* don't use shared pointer for prealloc_y_last_pipeline_used
2025-08-21 16:55:00 +02:00
Xuan-Son Nguyen
e9288e8869 chat : clarify the meaning of reasoning_format (#15408)
* chat : clarify the meaning of reasoning_format

* add link to this PR
2025-08-19 10:29:36 +02:00
Jeff Bolz
de5627910d vulkan: Optimize argsort (#15354)
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
2025-08-17 10:41:45 +02:00
Jeff Bolz
1fe00296f5 vulkan: fuse adds (#15252)
* vulkan: fuse adds

Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.

* check runtimeDescriptorArray feature

* disable multi_add for Intel due to likely driver bug
2025-08-16 11:48:22 -05:00
Jeff Bolz
2e2b22ba66 vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id (#15334) 2025-08-16 10:58:38 +02:00
Georgi Gerganov
5edf1592fd vulkan : fix out-of-bounds access in argmax kernel (#15342)
ggml-ci
2025-08-15 16:16:36 +02:00
Johannes Gäßler
b07791aa1d test-opt: fix backend support check (#15317)
* test-opt: fix backend support check

* Update tests/test-opt.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-08-15 11:23:17 +02:00
Aldehir Rojas
b204a5a234 gpt-oss: implement harmony parsing (#15181)
* model : add harmony parser for gpt-oss

* gpt-oss : fix grammar trigger from causing empty stack

* gpt-oss: tweak the grammar trigger again

* gpt-oss : add support for recipient in role header

* gpt-oss : fix ungrouped tool calls in grammar

* gpt-oss : loosen function name matching during parse

* gpt-oss : clean up workarounds

* gpt-oss : add template tests

* gpt-oss : simulate thinking and tool call tags

* gpt-oss : undo think tags when reasoning_format is none

* gpt-oss : set special tokens back to user defined

* gpt-oss : update openai-gpt-oss template

* server : filter out harmony thought messages

* gpt-oss : simplify parsing
2025-08-14 17:23:11 +03:00
Georgi Gerganov
8b2483730f tests : remove unused includes (ggml/0) 2025-08-14 14:59:27 +03:00
Jonathan Graehl
5cdb27e091 finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Oliver Simons
6028bf7435 CUDA: Optimize reduce_rows_f32 kernel, leading up to 25x perf improvement on kernel-level and 10% perf increase for Gemma3n (#15132)
* Factor out `reduce_rows_f32` from common.cuh

This increases iteration cycle speed by not having to recompile
every kernel all the time

* Hide memory-latency by loop unrolling in reduce_rows_f32

* Further optimizations to `reduce_rows_f32`

1. Increase threadblock size to better hide latency of memory requests.
   As a consequence of bigger threadblocks, do 2-step summation, using
   shared memory to communicate results between invocations
2. Use sum_temp array to reduce waits on sum
3. Adjust num_unroll to reflext bigger threadblock
4. Improve default block_dims, increase support for more block_dims

* Add perf tests for `reduce_rows_f32` kernel

* Add heuristic to toggle 128/512 threads based on sm count

Break even point was the minimum of the following multiples.

| GPU Model                     | Nrow SM Count Multiple |
| -----------                   | -----------            |
| RTX 4000 SFF ADA              | 2.0x                   |
| RTX 6000 ADA                  | 2.5x                   |
| RTX PRO 6000 Blackwell Max-Q  | 3.04x                  |
| RTX PRO 4500 Blackwell	| 3.15x                  |

* Ensure perf gains also for small ncols and large nrows

Alternative to this, one could have also made the number of unrollings
template-able, but that would require compiling the kernel multiple
times, increasing binary size unnecessarily

* Modify perf and unit-tests

* Apply auto-formatting by clang

* Fix CI build failure

See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486
Building with VS generator worked though.

* Remove sm_count property from `ggml_backend_cuda_context`

Requested by @JohannesGaessler, and should fix remaining CI issues as a
side-effect

* Add CUB-based implementation for GGML_OP_MEAN

Currently this branch is only executed for nrows==1

* Add heuristics to execute CUB branch only when it brings perf

Heuristics were determined on the following HW:

* RTX 4000 SFF ADA
* RTX 6000 ADA
* RTX PRO 6000 Blackwell Max-Q
* RTX PRO 4500 Blackwell

* Add unit-test for CUB-based mean

Tests should run with CUDA Graphs enabled per default on NVGPUs

* Rename `USE_CUB` to `GGML_CUDA_USE_CUB`

Suggested by @JohannesGaessler

* Unindent Preprocessor directives

See
https://github.com/ggml-org/llama.cpp/pull/15132#discussion_r2269213506
2025-08-13 10:04:46 +02:00
Sachin Desai
3db4da56a5 chat : support Granite model reasoning and tool call (#14864) 2025-08-06 20:27:30 +02:00
Sigbjørn Skjæret
65c797c4fa chat : fix yandex chat template (#15116) 2025-08-06 13:26:49 +02:00
Georgi Gerganov
fd1234cb46 llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Sigbjørn Skjæret
f324a3b715 chat : only remove double bos/eos if added (#15086)
* only remove double bos/eos if added

* fix tests
2025-08-05 20:43:36 +02:00
Jhen-Jie Hong
f738989dcb chat : fix multiple tool_calls on hermes-2-pro (#14962) 2025-08-02 18:04:48 +08:00
Jeff Bolz
ec0b18802c vulkan: Support ne[3]>1 in noncontig matrix-vector multiply (#15015) 2025-08-02 10:48:30 +02:00
Georgi Gerganov
00131d6eaf tests : update for LLAMA_SET_ROWS=1 (#14961)
* test-thread-safety : each context uses a single sequence

* embedding : handle --parallel argument

ggml-ci

* save-load : handle -np 1

ggml-ci

* thread-safety : avoid overriding threads, reduce test case arg

ggml-ci
2025-07-30 15:12:02 +03:00
Sigbjørn Skjæret
138b288b59 cuda : add softcap fusion (#14907) 2025-07-29 14:22:03 +02:00
Leonard Mosescu
bda62193b2 test-backend-ops : extend test case filtering (#14865)
* Extend test case filtering

1. Allow passing multiple (comma-separated?) ops to test-backend-ops. This can be convenient when working on a set of ops, when you'd want to test them together (but without having to run every single op). For example:

`test-backend-ops.exe test -o "ADD,RMS_NORM,ROPE,SILU,SOFT_MAX"`

2. Support full test-case variation string in addition to basic op names. This would make it easy to select a single variation, either for testing or for benchmarking. It can be particularly useful for profiling a particular variation (ex. a CUDA kernel), for example:

`test-backend-ops.exe perf -b CUDA0 -o "MUL_MAT(type_a=f16,type_b=f32,m=4096,n=512,k=14336,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=2)"`

These two can be combined. As the current `-o`, this change doesn't try to detect/report an error if an filter doesn't name existing ops (ex. misspelled)

* Updating the usage help text

* Update tests/test-backend-ops.cpp
2025-07-28 18:04:27 +02:00
Erik Scholz
89d1029559 vulkan : add fp16 support for the conv_2d kernel (#14872)
* add f16 to conv_2d testing
* weaken conv2d test error threshold
2025-07-27 12:04:33 +02:00
Aman Gupta
446595b9b3 Docs: add instructions for adding backends (#14889) 2025-07-27 09:36:43 +08:00
Georgi Gerganov
18f3b5ff9e tests : add non-cont K,V FA tests
ggml-ci
2025-07-23 14:08:09 +03:00
Aman Gupta
8c988fa41d CUDA: add fused rms norm (#14800) 2025-07-23 09:25:42 +08:00
Jeff Bolz
c2e058f1b4 vulkan/cuda: Fix im2col when KW!=KH (#14789)
The tid is decomposed into "ow + ky*OW + kx*OW*KH". Change "ksize" to match.
2025-07-21 13:35:40 +02:00
Ervin Áron Tasnádi
a979ca22db ggml: adds CONV_2D op and direct GEMM Vulkan implementation (#14316)
* ggml/ggml-vulkan/test-backend-ops: adds CONV_2D for Vulkan

* ggml-vulkan: adds f32 scalar shader to compute 2D convolution directly
with gemm (no need for im2col),

* test-backend-ops: adds test_case_ref to check the validity/performance of ops
against reference implementations having different graphs, adds tests

* * Performance fixes: minimized branch divergence, uses collectives to
  eliminate redundant calculation, macros removed.

* Kernel shared memory size check

* Updates test-backend-ops to support graphs for performance
  measurement.

* * Apple/Win32 compile errors fixed

* Subgroup size used to determine tile size -> fixes llvmpipe errors.

* Collectives disabled by default.

* Intel support is disabled as the performance is poor.

* Conv2d enabled for Intel with disabled collectives, disabled for Apple

* test-backend-ops modifications are reverted

* Trailing spaces and missing override fixed.

* Triggering pipeline relaunch.

* Code formatted with .clang-format.
2025-07-19 21:59:08 +02:00
Georgi Gerganov
bf9087f59a metal : fuse add, mul + add tests (#14596)
ggml-ci
2025-07-18 20:37:26 +03:00
Georgi Gerganov
225e7a1438 llama : add high-throughput mode (#14363)
* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-16 16:35:42 +03:00
Tarek Dakhran
c31e60647d tests : cover lfm2 cases in test_ssm_conv (#14651) 2025-07-12 19:10:14 +02:00
Acly
3e303b1107 vulkan : implement ggml_roll (ggml/1290)
ggml-ci
2025-07-12 14:25:44 +03:00
Aman Gupta
11ee0fea2a Docs: script to auto-generate ggml operations docs (#14598)
* Docs: script to auto-generate ggml operations docs

* Review: formatting changes + change github action

* Use built-in types instead of typing

* docs : add BLAS and Metal ops

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-10 23:29:01 +08:00
compilade
a57d1bcb3c cuda : support Falcon-H1 state size for SSM_SCAN (#14602) 2025-07-09 23:54:38 -04:00
Xuan-Son Nguyen
98bab638fb ggml : add ggml_scale_bias (#14417)
* ggml : add ggml_scale_bias

* ggml_vec_mad1_f32

* add more simd

* add CUDA

* sycl

* vulkan

* cann (placeholder)

* opencl

* will this fix cpu?

* fix cuda

* suggestions from coderabbit

* fix cann compile error

* vDSP_vsmsa

* rm __ARM_FEATURE_SVE

* use memcpy for op params

* make code looks more consistent

* use scalar for __ARM_FEATURE_SVE

* add x param to ggml_vec_mad1_f32
2025-07-09 18:16:12 +02:00
Georgi Gerganov
4d0dcd4a06 cuda : fix rope with partial rotation and non-cont src (#14580)
* cuda : fix rope non-cont

ggml-ci

* cont : fix multi-rope + add test

ggml-ci

* sycl : try fix

ggml-ci

* cont : fix sycl + clean-up cuda

ggml-ci
2025-07-08 10:15:21 +03:00
Jeff Bolz
e592be1575 vulkan: fix rms_norm+mul fusion (#14545)
The fused operation was grabbing the epsilon value from the wrong place.

Add an env var to disable fusion.

Add some missing checks for supported shapes/types.

Handle fused rms_norm+mul in check_results.
2025-07-06 10:08:16 +02:00
R0CKSTAR
b81510a7b7 test-backend-ops: add support for specifying output format (#14368)
* test-backend-ops: add support for specifying output format

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Add build_commit and build_number in test_result

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* refactor

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Get build commit from ggml_commit()

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Merge errors into test_operation_info && address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* remove visitor nonsense

* remove visitor comment

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

---------

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2025-07-05 12:10:53 +08:00
Johannes Gäßler
c8c4495b8d ggml: backward pass for split swiglu (#14483) 2025-07-03 17:05:18 +02:00
Georgi Gerganov
9067487c44 ggml : fix FA mask dim 2 and 3 (#14505)
* ggml : fix FA mask dim 2 and 3

ggml-ci

* backends : unsupport batched FA in CUDA and Vulkan

ggml-ci

* vulkan : disable FA for mask->ne[2] != 1
2025-07-03 10:46:57 +03:00
Georgi Gerganov
d4cdd9c1c3 ggml : remove kompute backend (#14501)
ggml-ci
2025-07-03 07:48:32 +03:00
Aman Gupta
55c2646b45 CUDA: add dynamic shared mem to softmax, refactor general usage (#14497) 2025-07-03 07:45:11 +08:00
compilade
5d46babdc2 llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00
Georgi Gerganov
ec68e84c32 ggml : support bcast ggml_soft_max_ext, ggml_flash_attn_ext (#14435)
ggml-ci
2025-07-02 15:48:33 +03:00
Jeff Bolz
6a746cf9c4 vulkan: Split large mul_mat_id to fit in shared memory (#14451) 2025-07-01 10:43:08 +02:00
Acly
431b2c24f3 ggml-cpu : "align corners" for bilinear upscale/downscale (ggml/1285)
* add "align corners" mode for bilinear upscale, and allow downscaling
* add ggml_interpolate, deprecate ggml_upscale_ext, pass in align-corners as bit-flag
* test-backend-ops: replace ggml_upscale_ext with ggml_interpolate, add test cases for downscale and align-corners
2025-07-01 11:06:39 +03:00
Diego Devesa
eb3fa2913e test-backend-ops : disable llama test (#14461) 2025-06-30 12:43:15 +02:00