- Spread the work across the whole workgroup. Using more threads seems to
far outweigh the synchronization overhead.
- Specialize the code for when the division is by a power of two.
* vulkan: allow unclamped loads in coopmat2 mul_mat_id shader
* vulkan: increase coopmat2 mul_mat_id tile size
* vulkan: optimize mat_mul_id row_ids search to batch loads, and port to coopmat1 path
* vulkan: use smaller FA row size when head size is large. applies to both scalar and CM2 paths (CM1 isn't used due to shared memory limits)
This assert fired running Qwen_Qwen3-30B-A3B-Q2_K.gguf:
GGML_ASSERT(nei0 * nei1 <= 3072);
The tensor is 8 x 512. Increase this array size to accommodate.
* vulkan: Add bfloat16 support
This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.
It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.
The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.
* vulkan: Support bf16 tensors without the bf16 extension or coopmat support
Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.
* vulkan: bfloat16 fixes (really works without bfloat16 support now)
* vulkan: fix spirv-val failure and reenable -O
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.
This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.
The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
* vulkan: initial support for IQ1_S and IQ1_M quantizations
* vulkan: define MMV kernels for IQ1 quantizations
* devops: increase timeout of Vulkan tests again
* vulkan: simplify ifdef for init_iq_shmem
* vulkan: initial support for IQ3_S
* vulkan: initial support for IQ3_XXS
* vulkan: initial support for IQ2_XXS
* vulkan: initial support for IQ2_XS
* vulkan: optimize Q3_K by removing branches
* vulkan: implement dequantize variants for coopmat2
* vulkan: initial support for IQ2_S
* vulkan: vertically realign code
* port failing dequant callbacks from mul_mm
* Fix array length mismatches
* vulkan: avoid using workgroup size before it is referenced
* tests: increase timeout for Vulkan llvmpipe backend
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.
coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.