Commit Graph

37 Commits

Author SHA1 Message Date
Sigbjørn Skjæret
84ab83cc0b model : jina-embeddings-v3 support (#13693)
* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* fix vocab parsing with only tokenizer.json

* set mask token lstrip attribute

* additional unk_token_id fallback just in case [no ci]

* revert vocab_size() change [no ci]

* merge tensor loading into general bert

* rope

* add lora embedding and loading (non-functional)

* export separate lora ggufs instead

* add adapter metadata api

* use std::string

* convert_hf_to_lora compatibility

* fix assert

* apply suggestions from review

* apply suggestion from review
2025-08-28 15:49:50 +02:00
Piotr Wilkin (ilintar)
b1afcab804 model : add support for Seed-OSS (#15490)
* First draft

* Fix linter errors

* Added missing sinks nullptr

* Don't forget the llama-arch!

* We're through to the generation stage.

* Fix post-attention norm

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix RoPE type

* Fix tensor name and reorder llm_types

* Update gguf-py/gguf/constants.py

Remove nonexistent FFN_POST_NORM tensor

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add basic chat template

* Add chat template tests

* Remake chat template test

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Reorder llm type descriptions

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-23 15:21:52 +02:00
Georgi Gerganov
9ef6b0b835 model : add gpt-oss type strings (#15424) 2025-08-19 19:58:28 +03:00
Daniel Bevenius
7a0de96045 llama : add 18-layer model type for Gemma 3-270m (#15319)
This commit adds support for the 18-layer model type in the Gemma3
series, which is the size of the Gemma3-270m model.

The motivation for this commit is was the only change required for
Gemma3-270m to be converted to GGUF format and used with llama.cpp.

Once the model has been converted and uploaded to Huggingface it can be
used like this:
```console
$ ./build/bin/llama-cli -hf ggml-org/gemma-3-270m-GGUF:Q8_0
```
2025-08-14 17:56:26 +02:00
Georgi Gerganov
fd1234cb46 llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Sam
ef0144c087 model: support GLM 4.5 family of models (#14939)
* model: Add GLM 4.5 (#14921)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Merge in PR suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: Add GLM 4.5 family of models (#14921)

1. Updated tensor_mapping.py with NextN tensor mappings

- Added proper tensor mappings for all NextN/MTP tensors in /Users/samm/git/llama.cpp/gguf-py/gguf/tensor_mapping.py
- Added mappings for: eh_proj, embed_tokens, enorm, hnorm, shared_head.head, shared_head.norm

2. Added num_nextn_predict_layers configuration

- Added LLM_KV_NUM_NEXTN_PREDICT_LAYERS constant to llama-arch.h and llama-arch.cpp
- Added num_nextn_predict_layers field to llama_hparams struct
- Updated GLM4_MOE parameter loading in llama-model.cpp to read this parameter
- Modified tensor loading logic to conditionally load NextN tensors based on num_nextn_predict_layers
- Added GGUF writer support in gguf_writer.py with add_num_nextn_predict_layers() method
- Updated conversion script to extract and write this parameter from HuggingFace config

3. Added FIM tokens for GLM4_MOE

- Added GLM-4.5's FIM tokens to llama-vocab.cpp:
  - <|code_prefix|> for FIM_PRE
  - <|code_suffix|> for FIM_SUF
  - <|code_middle|> for FIM_MID

4. Removed manual NextN tensor handling

- Removed the special-case handling in convert_hf_to_gguf.py that manually mapped NextN tensors
- NextN tensors are now handled automatically through the proper tensor mapping system

* glm 4.5 update tensors names

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

* Apply suggestions from code review

* patch broken chat template

* typings fix

* add TENSOR_SKIP flag


Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update src/llama-model-loader.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-08-04 20:29:25 +02:00
Piotr Wilkin (ilintar)
cb887f1bc1 model: add Ernie 4.5 MoE support (#14658)
* Add Ernie4.5 MoE

* Fix Flake errors.

* Properly encode/decode MoE layer step

* Correct tensor mappings (.weight)

* Pass and read n_ff_exp

* n_ff_shexp calculation and further minor changes

* Rope fixes.

* .gitignore fix

* Add unit32 cast for Linux builds

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Further fixes from code review

* Fix trailing whitespace

* Reenable missing experts error

* Code style from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix non-MoE regression

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-17 23:15:32 +02:00
Georgi Gerganov
01612b7409 llama : reuse compute graphs (#14482)
* llama : reuse compute graphs

ggml-ci

* llama-bench : add graph reuse parameter

ggml-ci

* cont : remove the parameter and the sched resets

ggml-ci

* graph : rename update() to can_reuse()

ggml-ci

* params : remove is_same()

ggml-ci

* graph : set res->params in llm_graph_context constructor

ggml-ci

* graph : avoid set_max_nodes in llm_graph_result

ggml-ci

* kv-cache : reuse llama_context's graph result instance

ggml-ci

* context : reset the previous graph result upon memory updates

ggml-ci

* batch : llama_ubatch now carries its data instead of pointing to balloc

ggml-ci

* merge : fix build

ggml-ci

* graph : fix can_reuse() checks when flash-attention is disabled

* graph : move llm_graph_result impl in source file + debug env

ggml-ci
2025-07-17 19:08:33 +03:00
Tarek Dakhran
f5e96b368f model : support LiquidAI LFM2 hybrid family (#14620)
**Important**
LFM2 was [merged ](https://github.com/huggingface/transformers/pull/39340)into transformers, but has not yet been released.
To convert into gguf, install transformers from source
```shell
pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
```
2025-07-11 20:27:01 +02:00
Ryan Mangeno
4bb625b713 Smoldocling support (#14597)
* support for smoldocling

* fixed merge conflicts

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* merge conflicts

* pre tokenizer merge fix

* convert : fix smollm3 jinja template (#14586)

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* support for smoldocling

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* fixed merge conflicts

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* safetensors tensor mapping

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* added back accidental removal of clean spaces for hunyuan

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* updated hash and reordererd model list

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update include/llama.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf_update.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* removed old tensor name

* removed tensor mappings -> handled by smolvlm

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>
Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: compilade <git@compilade.net>
2025-07-10 19:41:00 +02:00
compilade
4a5686da22 llama : support Jamba hybrid Transformer-Mamba models (#7531)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* mamba : fix non-contiguous usage of ggml_silu

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* convert : fix jamba conv1d shape squeezing

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-09 14:59:57 -04:00
Xuan-Son Nguyen
8f22dc0a53 model : add hunyuan moe (#14425)
* model : add hunyuan moe

* tokenizer ok

* fix tensor name

* cgraph init

* chat template

* wip

* almost working

* skip embed, fix bos

* cleanup

* yarn scaling

* cleanup

* correct rope type

* failed token fix

* ntk alpha freq_base

* tokenization working

* cleanup and pr changes

* vocab_size sanity check

* ntk alpha generic

* Update convert_hf_to_gguf.py

* Apply suggestions from code review

* fix regression

* fix style

---------

Co-authored-by: kooshi <1934337+kooshi@users.noreply.github.com>
2025-07-08 11:24:06 +03:00
compilade
5d46babdc2 llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00
Weizhao Ouyang
566c16fcce model : add support for ERNIE 4.5 0.3B model (#14408)
Add Day-0 support for Baidu ERNIE 4.5 0.3B model.

Signed-off-by: Weizhao Ouyang <weizhao.ouyang@arm.com>
2025-06-28 16:08:21 +02:00
Xuan-Son Nguyen
8846aace49 model : gemma3n text-only (#14400)
* gemma3n

* add llm_graph_input_one
2025-06-26 20:34:02 +03:00
Mikko Juola
9ae4143bc6 model : add dots.llm1 architecture support (#14044) (#14118)
Adds:

* Dots1Model to convert_hf_to_gguf.py

* Computation graph code to llama-model.cpp

* Chat template to llama-chat.cpp to detect this model's template.

---

The model is called "dots.llm1" (I decided to shorten it to dots1 or
DOTS1 in the code generally) architecture.

The only models that exist as of writing of this commit that follow this
architecture are "dots.llm1.inst" and "dots.llm1.base" from here:

* https://huggingface.co/rednote-hilab/dots.llm1.inst

* https://huggingface.co/rednote-hilab/dots.llm1.base

The model architecture is a combination of Qwen and Deepseek parts, as
seen here:

ffe12627b4/src/transformers/models/dots1/modular_dots1.py
2025-06-15 09:52:06 +02:00
Sigbjørn Skjæret
d17a809ef0 llama : support multiple classifier outputs and labels (#13940) 2025-06-06 09:03:25 +02:00
Georgi Gerganov
e298d2fbd0 kv-cache : add SWA support (#13194)
* kv-cache : prepare for SWA

ggml-ci

* kv-cache : initial iSWA implementation

ggml-ci

* kv-cache : rework error recovery logic

ggml-ci

* models : fix Phi-3 SWA parameters

ggml-ci

* model : adjust Granite to rope factor changes

ggml-ci

* server : check if context can do shifts

ggml-ci

* iswa : for now, always enable shifts (experiment)

ggml-ci

* kv-cache : simplify SWA logic

ggml-ci

* kv-cache : apply defrag when we fail to find slots for the batch

ggml-ci

* llama : update docs about llama_decode

ggml-ci

* kv-cache : update warning logs when no space for the batch is available

ggml-ci

* llama : add llama_kv_self_seq_pos_min()

* kv-cache : keep track of partial SWA computes and print warnings

* server : disallow use cases involving partial SWA context

ggml-ci

* llama : add param to control SWA cache size

ggml-ci

* minor : clean-up

ggml-ci
2025-05-20 08:05:46 +03:00
Johannes Gäßler
10d2af0eaa llama/ggml: add LLM training support (#10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-12 14:44:49 +02:00
ymcki
3bf785f3ef llama : Llama-3_1-Nemotron-Ultra-253B-v1 support (#12843) 2025-05-03 17:39:51 +02:00
Georgi Gerganov
c642bc014c kv-cache : separate recurrent vs non-recurrent impl (#12799)
* kv-cache : serparate recurrent vs non-recurrent impl (wip)

ggml-ci

* kv-cache : init -> contructor + add llama_memory_params

ggml-ci

* kv-cache : fix callback reference

ggml-ci

* context : llama_kv_cache -> llama_memory_i

ggml-ci

* context : move memory creation logic to model

ggml-ci

* llama : remove reference of memory during encode

ggml-ci

* kv-cache : hide padding details in the implementation

ggml-ci

* kv-cache : add ubatch_next()

ggml-ci

* context : simplify sbatch logic

ggml-ci

* kv-cache : hide defrag logic in the implementation

ggml-ci

* context : hide kv cache details in implementation

ggml-ci

* build : fix

ggml-ci

* cont : another fix

ggml-ci

* kv-cache : simplify interface (wip)

ggml-ci

* kv-cache : use separate KV cell structs for unified/recurrent

ggml-ci

* kv-cache : clean-up

ggml-ci

* model : better llama_model::create_model() signature

ggml-ci

* kv-cache : fix recurrent seq_rm()

ggml-ci

* kv-cache : replace `struct callbacks` with `llama_model &`

ggml-ci

* kv-cache : replace `struct graph_params` with `llama_context &`

ggml-ci

* kv-cache : fix offload check

ggml-ci

* context : avoid passing unique_ptr

ggml-ci

* kv-cache : avoid using the backends from the llama_context

ref #13113

ggml-ci

* kv-cache : more consistent debug logs [no ci]

* kv-cache : do not pass the full llama_context for kv graphs

ggml-ci

* kv-cache : remove comment

* kv-cache : ggml_rope_ext_inplace -> ggml_rope_ext

ggml-ci

* kv-cache : fix recurrent multi-user case

ggml-ci

* memory : remove comments [no ci]
2025-05-02 17:48:36 +03:00
Jared Van Bortel
a70183eb00 llama-model : fix the reported size class for nomic-embed-text-v2-moe (#13223) 2025-05-01 10:09:41 +03:00
Sigbjørn Skjæret
7d3af70b08 llama : llm_type order by size (#13177) 2025-04-29 13:25:53 +02:00
Sigbjørn Skjæret
e98b3692be llama : set qwen3 model type sizes (#13175) 2025-04-29 11:00:31 +02:00
Juk Armstrong
daa422881a llama : DeepSeek V2/V3 MLA implementation (#12801)
* Merged using squash to remove all noise commit messages

* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large

* Removed 3 conts (2x RoPE and 1x RMS-norm)

* Changed to use `<cmath>` instead of `<math.h>`

* Reverted removal of the 3 conts

* Used `reshape` in `llm_graph_context::build_attn_mha()`

* Use `k_pe = ggml_reshape`

* Removed the 3 conts again

* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF

* Removed MQA optimisation from `build_attn_mha()` as no gains now

* Simplified `is_mla` branch in `llm_build_deepseek2()`

* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls

* Fixed call to `build_attn` in `llm_build_t5_enc`
2025-04-15 09:49:57 +03:00
Xuan-Son Nguyen
1466621e73 llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00
Diego Devesa
e0e912f49b llama : add option to override model tensor buffers (#11397)
* llama : add option to override tensor buffers

* ggml : fix possible underflow in ggml_nbytes
2025-04-02 14:52:01 +02:00
Sigbjørn Skjæret
2c3f8b850a llama : support BailingMoE (Ling) (#12634) 2025-03-30 22:21:03 +02:00
Si1w
f125b8dccf llama : add PLM GGUF Conversion & Inference Support (#12457)
* add edgellm model arch[conversation feature doesn't work]

* remove output.weight layer for edgellm arch

* [Model] update the name of the model

* update the name of model arch in convert gguf

* [Model] Refarctor the model arch into llama-model

* [Bug] Fix the bug in create attn kv

* [Code] Fix editorconfig erros

* [Code] Remove Trailing whitespace

* [Code] Remove Trailing whitespace

* [Code] Change the order of model arch in list

* [Code] Fix flake8 Lint errors

* Remove trailing white space

* [Code] Remove  call in model arch
2025-03-27 12:49:15 +02:00
Molly Sophia
7dfad387e3 llama: Add support for RWKV v7 architecture (#12412)
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-18 07:27:50 +08:00
Georgi Gerganov
e0dbec0bc6 llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
2025-03-13 12:35:44 +02:00
Radoslav Gerganov
667d72846c rpc : early register backend devices (#11262)
Early register RPC devices and do not propagate RPC specifics in the
llama model structures.

ref: #10609
2025-01-17 10:57:09 +02:00
Georgi Gerganov
afa8a9ec9b llama : add llama_vocab, functions -> methods, naming (#11110)
* llama : functions -> methods (#11110)

* llama : add struct llama_vocab to the API (#11156)

ggml-ci

* hparams : move vocab params to llama_vocab (#11159)

ggml-ci

* vocab : more pimpl (#11165)

ggml-ci

* vocab : minor tokenization optimizations (#11160)

ggml-ci

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* lora : update API names (#11167)

ggml-ci

* llama : update API names to use correct prefix (#11174)

* llama : update API names to use correct prefix

ggml-ci

* cont

ggml-ci

* cont

ggml-ci

* minor [no ci]

* vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174)

ggml-ci

* vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174)

ggml-ci

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-12 11:32:42 +02:00
Molly Sophia
ee7136c6d1 llama: add support for QRWKV6 model architecture (#11001)
llama: add support for QRWKV6 model architecture (#11001)

* WIP: Add support for RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Some graph simplification

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add support for RWKV6Qwen2 with cpu and cuda GLA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix some typos

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix wkv test & add gla test

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix cuda warning

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update README.md

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update ggml/src/ggml-cuda/gla.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix fused lerp weights loading with RWKV6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* better sanity check skipping for QRWKV6 in llama-quant

thanks @compilade

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: compilade <git@compilade.net>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2025-01-10 09:58:08 +08:00
Pierrick Hymbert
f8feb4b01a model: Add support for PhiMoE arch (#11003)
* model: support phimoe

* python linter

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: add phimoe as supported model

ggml-ci

---------

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>
2025-01-09 11:21:41 +01:00
fairydreaming
9394bbd484 llama : Add support for DeepSeek V3 (#11049)
* convert : extend DEEPSEEK2 model architecture to support DeepseekV3ForCausalLM by adding EXPERT_WEIGHTS_NORM and EXPERT_GATING_FUNC model parameters and FFN_EXP_PROBS_B tensor type

* vocab : add DeepSeek V3 pre-tokenizer regexes

* unicode : handle ACCENT_MARK and SYMBOL categories in regex

* llama : add DeepSeek V3 chat template, handle new model parameters and tensor types

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-01-04 21:06:11 +01:00
Georgi Gerganov
f66f582927 llama : refactor src/llama.cpp (#10902)
* llama : scatter llama.cpp into multiple modules (wip)

* llama : control-vector -> adapter

* llama : arch

* llama : mmap

ggml-ci

* ci : remove BUILD_SHARED_LIBS=OFF

ggml-ci

* llama : arch (cont)

ggml-ci

* llama : chat

ggml-ci

* llama : model

ggml-ci

* llama : hparams

ggml-ci

* llama : adapter

ggml-ci

* examples : fix

ggml-ci

* rebase

ggml-ci

* minor

* llama : kv cache

ggml-ci

* llama : impl

ggml-ci

* llama : batch

ggml-ci

* cont

ggml-ci

* llama : context

ggml-ci

* minor

* llama : context (cont)

ggml-ci

* llama : model loader

ggml-ci

* common : update lora

ggml-ci

* llama : quant

ggml-ci

* llama : quant (cont)

ggml-ci

* minor [no ci]
2025-01-03 10:18:53 +02:00