* model: EmbeddingGemma sentence-transformers dense linear projections support
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
Adding support for the Dense modules used in EmbeddingGemma models.
EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone.
See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
- converting model with dense-layers is optional
- introduced dense config params
* Update convert_hf_to_gguf.py
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* fixed formatting issues
* Update src/llama-graph.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* - removed pooling_type_opt, always allow overriding pooling_type
- asserts checking dense features dims
* fix python lint
* fix ubuntu gcc build warning
* - fixed thread-safety test
- moved asserts to load_hparams
* - tidying up code
- simplifying graph-context expecting both dense weights
* minor : add TODO
---------
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add grok-2 support
* type fix
* type fix
* type fix
* "fix" vocab for invalid sequences
* fix expert tensor mapping and spaces in vocab
* add chat template
* fix norm tensor mapping
* rename layer_out_norm to ffn_post_norm
* ensure ffn_post_norm is mapped
* fix experts merging
* remove erroneous FFN_GATE entry
* concatenate split tensors and add more metadata
* process all expert layers and try cat instead of hstack
* add support for community BPE vocab
* fix expert feed forward length and ffn_down concat
* commit this too
* add ffn_up/gate/down, unsure if sequence is right
* add ffn_gate/down/up to tensor names
* correct residual moe (still not working)
* mess--
* fix embedding scale being applied twice
* add built in chat template
* change beta fast for grok if default value
* remove spm vocab in favor of community bpe vocab
* change attention temp length metadata type to integer
* update attention temp length metadata
* remove comment
* replace M_SQRT2 with std::sqrt(2)
* add yarn metadata, move defaults to hparams
This commit adds check for two function pointers returned from
ggml_backend_reg_get_proc_address.
The motivation for this is that the function pointer could be nullptr if
the get proc address function changes in the future. This is also
consistent with all the other calls to ggml_backend_reg_get_proc_address
in the code base.
* llama : set n_outputs to 1 to avoid 0 outputs mean-pooling
This commit modifies the llama_context constructor to set n_outputs to
1.
The motivation for this is that when using pooling, and specifically
mean pooling, for embeddings having n_outputs set to 0 can lead to the
following error:
```console
$ build/bin/llama-embedding -m models/nomic-embed-text-1.5-Q4_K_M.gguf \
--pooling mean -p "Hello, how are you?"
...
llama_context: CPU output buffer size = 0.12 MiB
/home/danbev/work/ai/llama.cpp/ggml/src/ggml.c:3023: GGML_ASSERT(ggml_can_mul_mat(a, b)) failed
0x0000743c96d107e3 in __GI___wait4 (pid=292978, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30 ../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
30 in ../sysdeps/unix/sysv/linux/wait4.c
196 waitpid(child_pid, NULL, 0);
230 ggml_print_backtrace();
3023 GGML_ASSERT(ggml_can_mul_mat(a, b));
1823 cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
18983 llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
1399 auto * gf = model.build_graph(gparams);
292 auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true);
2329 auto * ctx = new llama_context(*model, params);
913 llama_context * lctx = llama_init_from_model(model, cparams);
105 common_init_result llama_init = common_init_from_params(params);
[Inferior 1 (process 292976) detached]
Aborted (core dumped)
```
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add comment about not reserving graphs with zero outputs
* add assert in graph_reserve to ensure n_outputs >= 1
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
* server : add SWA checkpoints
ggml-ci
* cont : server clean-up
* server : handle state restore fails
* llama : add extended llama_state_seq_ API
* server : do not make checkpoints if --swa-full
ggml-ci
* llama : remove flags value for NONE
* server : configure number of SWA checkpoints with CLI arg
ggml-ci
* args : fix scope of new argument
* examples/finetune -opt SGD (stochastic gradient descent) memory opt
add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.
support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)
llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)
(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val: [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00
SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val: [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)
note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')
-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.
note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence
new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)
cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)
since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)
test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values); tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)
* Vulkan: Implement GGML_OP_OPT_STEP_SGD
* tests: Fix OPT_STEP_SGD test-backend-ops
* SGD op param store weight-decay and not 1-alpha*wd
* minor + cosmetic changes
* fix vulkan sgd
* try CI fix
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* llama : clarify comment about pp and tg graphs [no ci]
This commit clarifies the comment in `llama-context.cpp` regarding the
prefill prompt (pp), and token generation (tg) graphs.
The motivation for this is that I've struggled to remember these and had
to look them up more than once, so I thought it would be helpful to add
a comment that makes it clear what these stand for.
* squash! llama : clarify comment about pp and tg graphs [no ci]
Change "pp" to "prompt processing".
* llama : deprecate llama_kv_self_ API
ggml-ci
* llama : allow llama_memory_(nullptr)
ggml-ci
* memory : add flag for optional data clear in llama_memory_clear
ggml-ci
* kv-cache : simplify the "struct llama_kv_cache" interface
ggml-ci
* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)
ggml-ci
* kv-cache : some comments
ggml-ci
* context : fix graph reserve for multiple sequences
ggml-ci
* kv-cache : fix typo [no ci]
* kv-cache : fix find_slot() logic for free slots
ggml-ci
* llama : add TODO for deprecating the defrag API in the future
* kv-cache : improve find_slot() using min/max seq pos info
ggml-ci
* llama : handle aborts and compute errors
ggml-ci
* memory : extract state into llama_memory_state
ggml-ci
* kv-cache : add comments
ggml-ci
* server : update batching logic to reset n_batch on successful decode
* server : upon full re-processing, remove the sequence from the cache
* kv-cache : add TODO for doing split_equal when split_simple fails
ggml-ci