This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more
difficult for various reasons so I haven't done it. Performance for this
shader is around 2.5x better than for the scalar shader when doing prompt
processing. Some of the benefit may be from other optimizations like staging
through shared memory, or splitting by rows.
* vulkan: scalar flash attention implementation
* vulkan: always use fp32 for scalar flash attention
* vulkan: use vector loads in scalar flash attention shader
* vulkan: remove PV matrix, helps with register usage
* vulkan: reduce register usage in scalar FA, but perf may be slightly worse
* vulkan: load each Q value once. optimize O reduction. more tuning
* vulkan: support q4_0/q8_0 KV in scalar FA
* CI: increase timeout to accommodate newly-supported tests
* vulkan: for scalar FA, select between 1 and 8 rows
* vulkan: avoid using Float16 capability in scalar FA
This assert fired running Qwen_Qwen3-30B-A3B-Q2_K.gguf:
GGML_ASSERT(nei0 * nei1 <= 3072);
The tensor is 8 x 512. Increase this array size to accommodate.
* vulkan: Add bfloat16 support
This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.
It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.
The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.
* vulkan: Support bf16 tensors without the bf16 extension or coopmat support
Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.
* vulkan: bfloat16 fixes (really works without bfloat16 support now)
* vulkan: fix spirv-val failure and reenable -O
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.
split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.
This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.
The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple
of the number of rows in the matrix. The KV dim is a multiple of the number of
columns for the aligned shader.
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
When adjacent batches of Q share the same batches of K/V, batch them into
the same workgroup. For example, when:
dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1))
previously we would run 32 workgroups computing 1 result each, now we will
run 8 workgroups computing 4 results each.
This doesn't directly translate to better performance (at least when you have
>=32 SMs), but in a subsequent change I'll enable split_k which will scale much
better with 4x fewer workgroups.
* vulkan: fix coopmat shader generation when cross-compiling
Previously the status of coopmat{,2} support isn't passed to the
vulkan-shaders-gen project building on the host, which leads to build
failure because of the cross-compiling code expecting coopmat{,2}
shaders that didn't get generated.
Fix this by passing the coopmat{,2} support status to vulkan-shaders
subproject.
Signed-off-by: Icenowy Zheng <uwu@icenowy.me>
* Only call coop-mat shaders once
* Fix whitespace
---------
Signed-off-by: Icenowy Zheng <uwu@icenowy.me>
Co-authored-by: bandoti <141645996+bandoti@users.noreply.github.com>
The OOB calculation could be wrong if the last iteration was during one of
the unrolled loops. Adjust the unrolling counts to avoid this. Add a couple
new backend tests that hit this failure on NVIDIA GPUs.
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders
* vulkan: Optimize mul_mat_vec p021 and nc shaders.
These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).
Using subgroupAdd in the p021 shader also helps, use that conditionally.
* vulkan: implement specialized MMV kernels for IQ2 quantizations
* vulkan: add MMV kernels for IQ3 quants
* vulkan: Increase MMV batch size and unroll IQ LUT setup
* vulkan: fix init_iq_shmem for WG sizes larger than tables
* vulkan: common batch size for all I-quants
* vulkan: initial support for IQ1_S and IQ1_M quantizations
* vulkan: define MMV kernels for IQ1 quantizations
* devops: increase timeout of Vulkan tests again
* vulkan: simplify ifdef for init_iq_shmem
* vulkan: initial support for IQ3_S
* vulkan: initial support for IQ3_XXS
* vulkan: initial support for IQ2_XXS
* vulkan: initial support for IQ2_XS
* vulkan: optimize Q3_K by removing branches
* vulkan: implement dequantize variants for coopmat2
* vulkan: initial support for IQ2_S
* vulkan: vertically realign code
* port failing dequant callbacks from mul_mm
* Fix array length mismatches
* vulkan: avoid using workgroup size before it is referenced
* tests: increase timeout for Vulkan llvmpipe backend
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.
coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.