* server : implement `return_progress`
* add timings.cache_n
* add progress.time_ms
* add test
* fix test for chat/completions
* readme: add docs on timings
* use ggml_time_us
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* feat: Add python-side constants and conversion for adapter.lora.invocation_string
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add c++ side constants for adapter.lora.invocation_string
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Parse invocation string for adapters from GGUF
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(python): Update conversion to alora_invocation_tokens
This is the preferred method in PEFT which is the source of ground truth
https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(cpp): Update to alora_invocation_tokens on c++ side
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add C APIs to get alora invocation token array from lora
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Initial implementation of alora cache logic in server
This does not yet do the part to identify the invocation tokens and only
apply the lora adapter afterwards, but it does seem to produce correct
results if the invocation tokens are the beginning of the uncached input.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Identify alora invocation sequences
This currently limits to a single enabled alora per slot. Multiple aloras
with different invocation sequences would be possible, but it would require
a more complex integration of the adapter toggling and is not really a well
studied case for alora since it's unclear if one alora can reuse cache from
previous prefill computed with a different alora.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Only reuse cache for tokens before the alora invocation start
This is a bit of an edge case, but theoretically a user could try the same
query with the alora disabled (just using the base model), then retry with
the alora. The cached tokens from the first pass should be invalid.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Handle un-cached tokens that come before the alora activation
The solution is to only fill up to the token before the invocation start in
the batch if there are any tokens to be prefilled between those pulled from
cache and the invocation start. When this is detected, the alora is
temporarily disabled with a scale of 0.0, then immediately re-enabled after
it has been initialized for the internal graph. Since the batch does not
complete the prompt tokens, the remaining prompt tokens are handled in the
next task, pulling all of the non-alora tokens from cache and proceeding
with prefill for the alora tokens.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use || instead of 'or'
Too much python 🤦
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix off-by-one for limiting cached tokens to before alora start
This was the cause of the inconsistent results from the dummy test script
with and without the turn that runs the prompt without the adapter before
running it with the adapter.
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Support backwards-compatibility for "invocation_string" in adapter_config.json
While this has been replaced in the PEFT PR in favor of
alora_invocation_tokens, the existing adapters in the ibm-granite org on HF
use "invocation_string," so this will enable backwards compatibility and
enable testing now (before PEFT PR changes have percolated everywhere).
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove duplicate logging
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters
Branch: gabe-l-hart/alora-support
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* feat: Set enable_thinking IFF not disabled and supported
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix inverted logic condition for prefill error
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Always parse the enable_thinking kwarg to overwrite the default value
From what I can tell, this started as a Qwen3-specific keyword, but from
the use in `chat.cpp` translates this inputs.enable_thinking to the right
thinking kwarg for the given model, this is now more of a standardized
kwarg, so it should always override the default value when sent as part of
the chat_template_kwargs field in the API.
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Don't limit tempalte expansion check to jinja
With the use_jinja check, non-jinja models would enable thinking and always
fail assistant prefill
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add the error text to json type errors in json_value
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Explicitly reject string values for "enable_thinking"
There are too many possible "truthy" / "falsy" strings and too many
ambiguous strings that don't have a clear truthy/falsy value, so the
simplest thing to do here is to reject the request. Ideally, this would be
a 422 (Unprocessable Entity), but right now it's coming back as a 500.
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Move logic for detecting template enable_thinking support to common
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use raw pointer for common chat template function
Branch: gabe-l-hart/thinking-model-disabled-agent-prefill
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* sampling : optimize sorting using bucket sort in more places
ggml-ci
* sampling : do not sort in dist sampler
ggml-ci
* sampling : avoid heap allocations for sort buffers
ggml-ci
* common : add option to sort sampling candidates by probability
ggml-ci
* sampling : revert the change for preserving sort buffers
* sampling : use std::copy instead of memcpy
* sampling : clarify purpose of partial sort helpers
ggml-ci
* cont : remove wrong comment [no ci]
* common : update comment
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* server : enable /slots by default and make it secure
ggml-ci
* server : fix tests to pass `--no-slots` when necessary
* server : extend /props with info about enabled endpoints
- Use server_tokens in more places in server and util.cpp
- Convert most functions that used llama_tokens to server_tokens
- Modify input tokenizer to handle JSON objects as subprompts
- Break out MTMD prompt parsing into utility function
- Support JSON objects with multimodal_data arrays for MTMD prompts along with other existing types
- Add capability to model endpoint to indicate if client can send multimodal data
- Add tests.
Add tracking for high watermark cache usage and make it available in /metrics endpoint.
Use-case: Tracking largest needed cache usage under realistic workload
to better understand memory requirements and be able to adjust
cache size/quantization for model/cache accordingly.
* server : add SWA checkpoints
ggml-ci
* cont : server clean-up
* server : handle state restore fails
* llama : add extended llama_state_seq_ API
* server : do not make checkpoints if --swa-full
ggml-ci
* llama : remove flags value for NONE
* server : configure number of SWA checkpoints with CLI arg
ggml-ci
* args : fix scope of new argument
* Checkpoint from VS Code for coding agent session
* Initial plan
* Fix typo in --override-tensor-draft flag implementation
* Add null termination for speculative tensor buffer overrides
* Apply suggestions from code review
* Apply suggestions from code review
* Extract tensor override parsing logic to common function (addresses @slaren's feedback)
* Apply suggestions from code review
* Apply suggestions
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* llama-server : implement universal assisted decoding
* Erase prompt tail for kv-cache
* set vocab_dft_compatible in common_speculative
* rename ctx_main to ctx_tgt
* move vocab_dft_compatible to spec struct
* clear mem_dft, remove mem
* detokenize id_last for incompatible models
* update comment
* add --spec-replace flag
* accept special tokens when translating between draft/main models
* Escape spec-replace
* clamp draft result to size to params.n_draft
* fix comment
* clean up code
* restore old example
* log common_speculative_are_compatible in speculative example
* fix
* Update common/speculative.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/speculative.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/speculative.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit adds support for the `embd_normalize` parameter in the
server code.
The motivation for this is that currently if the server is started with
a pooling type that is not `none`, then Euclidean/L2 normalization will
be the normalization method used for embeddings. However, this is not
always the desired behavior, and users may want to use other
normalization (or none) and this commit allows that.
Example usage:
```console
curl --request POST \
--url http://localhost:8080/embedding \
--header "Content-Type: application/json" \
--data '{"input": "Hello world today", "embd_normalize": -1}
```
* initial commit for handling extra template kwargs
* enable_thinking and assistant prefill cannot be enabled at the same time
* can set chat_template_kwargs in command line
* added doc
* fixed formatting
* add support for extra context in generic template init
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Apply suggestions from code review
coding standard: cosmetic changes
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix merge conflict
* chat.cpp: simplify calls to apply to ensure systematic propagation of extra_context (+ the odd existing additional_context)
* normalize environment variable name
* simplify code
* prefill cannot be used with thinking models
* compatibility with the new reasoning-budget parameter
* fix prefill for non thinking models
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Olivier Chafik <olivier.chafik@gmail.com>
* llama : deprecate llama_kv_self_ API
ggml-ci
* llama : allow llama_memory_(nullptr)
ggml-ci
* memory : add flag for optional data clear in llama_memory_clear
ggml-ci
* kv-cache : simplify the "struct llama_kv_cache" interface
ggml-ci
* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)
ggml-ci
* kv-cache : some comments
ggml-ci
* context : fix graph reserve for multiple sequences
ggml-ci
* kv-cache : fix typo [no ci]
* kv-cache : fix find_slot() logic for free slots
ggml-ci
* llama : add TODO for deprecating the defrag API in the future
* kv-cache : improve find_slot() using min/max seq pos info
ggml-ci
* llama : handle aborts and compute errors
ggml-ci
* memory : extract state into llama_memory_state
ggml-ci
* kv-cache : add comments
ggml-ci
* server : update batching logic to reset n_batch on successful decode
* server : upon full re-processing, remove the sequence from the cache
* kv-cache : add TODO for doing split_equal when split_simple fails
ggml-ci
* add preludes to content on partial regex match
* allow all parsers to parse non-tool-call content.
* tweak order of <|python_tag|> vs <function= parsing for functionary v3.1 format. still not ideal but hopefully less prone to crash