mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-14 11:07:10 +00:00
CANN: Support more ops (#12841)
* [CANN]Support Opt LOG && MEAN && PAD_REFLECT_1D * [CANN]Support COUNT_EQUAL && STEP && SGN * [CANN]codestyle adjustment * [CANN]codestyle adjustment --------- Signed-off-by: noemotiovon <noemotiovon@gmail.com>
This commit is contained in:
@@ -42,6 +42,8 @@
|
||||
#include <aclnnop/aclnn_sqrt.h>
|
||||
#include <aclnnop/aclnn_sin.h>
|
||||
#include <aclnnop/aclnn_cos.h>
|
||||
#include <aclnnop/aclnn_log.h>
|
||||
#include <aclnnop/aclnn_sign.h>
|
||||
#include "acl_tensor.h"
|
||||
#include "common.h"
|
||||
|
||||
@@ -650,6 +652,67 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
|
||||
*/
|
||||
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
|
||||
*
|
||||
* @details This function calculates the element-wise mean of the input tensor.
|
||||
* The result is written to the destination tensor `dst`.
|
||||
* The mean is computed by averaging the values across the entire tensor.
|
||||
*
|
||||
* This operation is optimized using the CANN backend for high-performance inference or training.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the mean result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_MEAN`.
|
||||
*/
|
||||
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs 1D reflect padding on the input tensor.
|
||||
* The amount of padding on each side is specified by parameters stored in `dst->op_params`.
|
||||
* The operation reflects the values at the borders of the tensor to generate the padded output.
|
||||
*
|
||||
* This operation is optimized using the CANN backend for high-performance inference or training.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the padded result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
|
||||
*/
|
||||
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an element-wise comparison between two input tensors,
|
||||
* and counts the number of positions where the elements are equal. The result is
|
||||
* stored in the destination tensor `dst` as a scalar.
|
||||
*
|
||||
* The operation is optimized using the CANN backend, making it suitable for
|
||||
* high-performance inference or training scenarios.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
|
||||
*/
|
||||
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Step activation function to a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function applies a step function element-wise to the input tensor, where
|
||||
* each element is transformed to 1.0 if it is greater than 0, and 0.0 otherwise.
|
||||
* The result is stored in the destination tensor `dst`.
|
||||
*
|
||||
* This operation is accelerated using the CANN backend to improve runtime performance.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_STEP`.
|
||||
*/
|
||||
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a element-wise operation to two input tensors using the CANN
|
||||
* backend.
|
||||
|
||||
Reference in New Issue
Block a user