mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : style fixes in simple conversion script * gguf : refactor gptneox conversion script * gguf : rename h5 to hf (for HuggingFace) * gguf : refactor pth to gguf conversion script * gguf : rm file_type key and method * gguf.py : fix vertical alignment * gguf.py : indentation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		@@ -13,6 +13,8 @@ from pathlib import Path
 | 
				
			|||||||
from transformers import AutoTokenizer
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | 
					# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def bytes_to_unicode():
 | 
					def bytes_to_unicode():
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    Returns list of utf-8 byte and a corresponding list of unicode strings.
 | 
					    Returns list of utf-8 byte and a corresponding list of unicode strings.
 | 
				
			||||||
@@ -34,6 +36,7 @@ def bytes_to_unicode():
 | 
				
			|||||||
    cs = [chr(n) for n in cs]
 | 
					    cs = [chr(n) for n in cs]
 | 
				
			||||||
    return dict(zip(bs, cs))
 | 
					    return dict(zip(bs, cs))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def count_model_parts(dir_model: str) -> int:
 | 
					def count_model_parts(dir_model: str) -> int:
 | 
				
			||||||
    num_parts = 0
 | 
					    num_parts = 0
 | 
				
			||||||
    for filename in os.listdir(dir_model):
 | 
					    for filename in os.listdir(dir_model):
 | 
				
			||||||
@@ -44,6 +47,7 @@ def count_model_parts(dir_model: str) -> int:
 | 
				
			|||||||
        print("gguf: found " + str(num_parts) + " model parts")
 | 
					        print("gguf: found " + str(num_parts) + " model parts")
 | 
				
			||||||
    return num_parts
 | 
					    return num_parts
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if len(sys.argv) < 3:
 | 
					if len(sys.argv) < 3:
 | 
				
			||||||
    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
					    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
				
			||||||
    print("  ftype == 0 -> float32")
 | 
					    print("  ftype == 0 -> float32")
 | 
				
			||||||
@@ -58,7 +62,7 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
 | 
				
			|||||||
# possible tensor data types
 | 
					# possible tensor data types
 | 
				
			||||||
#   ftype == 0 -> float32
 | 
					#   ftype == 0 -> float32
 | 
				
			||||||
#   ftype == 1 -> float16
 | 
					#   ftype == 1 -> float16
 | 
				
			||||||
#
 | 
					
 | 
				
			||||||
# map from ftype to string
 | 
					# map from ftype to string
 | 
				
			||||||
ftype_str = ["f32", "f16"]
 | 
					ftype_str = ["f32", "f16"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -67,6 +71,7 @@ if len(sys.argv) > 2:
 | 
				
			|||||||
    ftype = int(sys.argv[2])
 | 
					    ftype = int(sys.argv[2])
 | 
				
			||||||
    if ftype < 0 or ftype > 1:
 | 
					    if ftype < 0 or ftype > 1:
 | 
				
			||||||
        print("Invalid ftype: " + str(ftype))
 | 
					        print("Invalid ftype: " + str(ftype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        sys.exit(1)
 | 
					        sys.exit(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
					fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
				
			||||||
@@ -78,29 +83,29 @@ with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
 | 
					if hparams["architectures"][0] != "GPTNeoXForCausalLM":
 | 
				
			||||||
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
					    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sys.exit()
 | 
					    sys.exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# get number of model parts
 | 
					# get number of model parts
 | 
				
			||||||
num_parts = count_model_parts(dir_model)
 | 
					num_parts = count_model_parts(dir_model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
 | 
					llm_arch = "gptneox"
 | 
				
			||||||
 | 
					gguf_writer = gguf.GGUFWriter(fname_out, arch=llm_arch)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: get model metadata")
 | 
					print("gguf: get model metadata")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
llm_arch    = "gptneox"
 | 
					 | 
				
			||||||
block_count = hparams["num_hidden_layers"]
 | 
					block_count = hparams["num_hidden_layers"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.add_architecture(llm_arch)
 | 
					gguf_writer.add_architecture()
 | 
				
			||||||
gguf_writer.add_name(last_dir)
 | 
					gguf_writer.add_name(last_dir)
 | 
				
			||||||
gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
 | 
					gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | 
				
			||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
 | 
					gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
				
			||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | 
					gguf_writer.add_block_count(block_count)
 | 
				
			||||||
gguf_writer.add_block_count(llm_arch, block_count)
 | 
					gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
				
			||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | 
					gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
 | 
				
			||||||
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
 | 
					gguf_writer.add_head_count(hparams["num_attention_heads"])
 | 
				
			||||||
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
 | 
					gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
 | 
				
			||||||
gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
 | 
					gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
 | 
				
			||||||
gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# TOKENIZATION
 | 
					# TOKENIZATION
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -146,8 +151,9 @@ if Path(dir_model + "/tokenizer.json").is_file():
 | 
				
			|||||||
                        text.extend(c.encode('utf-8'))
 | 
					                        text.extend(c.encode('utf-8'))
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | 
					            print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | 
				
			||||||
            padding_token = f"[PAD{i}]".encode("utf8")
 | 
					            pad_token = f"[PAD{i}]".encode("utf8")
 | 
				
			||||||
            text = bytearray(padding_token)
 | 
					            text = bytearray(pad_token)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        tokens.append(text)
 | 
					        tokens.append(text)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    gguf_writer.add_token_list(tokens)
 | 
					    gguf_writer.add_token_list(tokens)
 | 
				
			||||||
@@ -228,6 +234,7 @@ for part_name in part_names:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					        n_dims = len(data.shape)
 | 
				
			||||||
        data_dtype = data.dtype
 | 
					        data_dtype = data.dtype
 | 
				
			||||||
 | 
					        old_dtype = data_dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					        # if f32 desired, convert any float16 to float32
 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					        if ftype == 0 and data.dtype == np.float16:
 | 
				
			||||||
@@ -241,77 +248,21 @@ for part_name in part_names:
 | 
				
			|||||||
        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
				
			||||||
            data_dtype = np.float16
 | 
					            data_dtype = np.float16
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
 | 
					        print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data_dtype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
 | 
					        data = data.astype(data_dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        gguf_writer.add_tensor(name, data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: write header")
 | 
					print("gguf: write header")
 | 
				
			||||||
gguf_writer.write_header_to_file()
 | 
					gguf_writer.write_header_to_file()
 | 
				
			||||||
print("gguf: write metadata")
 | 
					print("gguf: write metadata")
 | 
				
			||||||
gguf_writer.write_kv_data_to_file()
 | 
					gguf_writer.write_kv_data_to_file()
 | 
				
			||||||
print("gguf: write tensor metadata")
 | 
					print("gguf: write tensors")
 | 
				
			||||||
gguf_writer.write_ti_data_to_file()
 | 
					gguf_writer.write_tensors_to_file()
 | 
				
			||||||
 | 
					 | 
				
			||||||
# tensor data
 | 
					 | 
				
			||||||
print("gguf: convert and write tensor data")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
if num_parts == 0:
 | 
					 | 
				
			||||||
    part_names = ("pytorch_model.bin",)
 | 
					 | 
				
			||||||
else:
 | 
					 | 
				
			||||||
    part_names = (
 | 
					 | 
				
			||||||
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
for part_name in part_names:
 | 
					 | 
				
			||||||
    print("gguf: loading model part '"+ part_name + "'")
 | 
					 | 
				
			||||||
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for name in model_part.keys():
 | 
					 | 
				
			||||||
        data = model_part[name]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        old_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # we don't need these
 | 
					 | 
				
			||||||
        if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
 | 
					 | 
				
			||||||
            continue
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # convert any unsupported data types to float32
 | 
					 | 
				
			||||||
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
					 | 
				
			||||||
            data = data.to(torch.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        data = data.squeeze().numpy()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # map tensor names
 | 
					 | 
				
			||||||
        if name.endswith(".weight") and name[:-7] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-7]] + ".weight"
 | 
					 | 
				
			||||||
        elif name.endswith(".bias") and name[:-5] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-5]] + ".bias"
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            print( "Can not map tensor '" + name + "'" )
 | 
					 | 
				
			||||||
            sys.exit()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					 | 
				
			||||||
        data_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					 | 
				
			||||||
            data = data.astype(np.float16)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gguf_writer.write_tensor_to_file(data)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.close()
 | 
					gguf_writer.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
print("gguf: model successfully exported to '" + fname_out + "'")
 | 
					print("gguf: model successfully exported to '" + fname_out + "'")
 | 
				
			||||||
print("")
 | 
					print("")
 | 
				
			||||||
@@ -18,6 +18,7 @@ from sentencepiece import SentencePieceProcessor
 | 
				
			|||||||
# compatible with python < 3.9
 | 
					# compatible with python < 3.9
 | 
				
			||||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
					NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def count_model_parts(dir_model: str) -> int:
 | 
					def count_model_parts(dir_model: str) -> int:
 | 
				
			||||||
    num_parts = 0
 | 
					    num_parts = 0
 | 
				
			||||||
    for filename in os.listdir(dir_model):
 | 
					    for filename in os.listdir(dir_model):
 | 
				
			||||||
@@ -28,10 +29,12 @@ def count_model_parts(dir_model: str) -> int:
 | 
				
			|||||||
        print("gguf: found " + str(num_parts) + " model parts")
 | 
					        print("gguf: found " + str(num_parts) + " model parts")
 | 
				
			||||||
    return num_parts
 | 
					    return num_parts
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if len(sys.argv) < 3:
 | 
					if len(sys.argv) < 3:
 | 
				
			||||||
    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
					    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
				
			||||||
    print("  ftype == 0 -> float32")
 | 
					    print("  ftype == 0 -> float32")
 | 
				
			||||||
    print("  ftype == 1 -> float16")
 | 
					    print("  ftype == 1 -> float16")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sys.exit(1)
 | 
					    sys.exit(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -43,7 +46,7 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
 | 
				
			|||||||
# possible tensor data types
 | 
					# possible tensor data types
 | 
				
			||||||
#   ftype == 0 -> float32
 | 
					#   ftype == 0 -> float32
 | 
				
			||||||
#   ftype == 1 -> float16
 | 
					#   ftype == 1 -> float16
 | 
				
			||||||
#
 | 
					
 | 
				
			||||||
# map from ftype to string
 | 
					# map from ftype to string
 | 
				
			||||||
ftype_str = ["f32", "f16"]
 | 
					ftype_str = ["f32", "f16"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -52,6 +55,7 @@ if len(sys.argv) > 2:
 | 
				
			|||||||
    ftype = int(sys.argv[2])
 | 
					    ftype = int(sys.argv[2])
 | 
				
			||||||
    if ftype < 0 or ftype > 1:
 | 
					    if ftype < 0 or ftype > 1:
 | 
				
			||||||
        print("Invalid ftype: " + str(ftype))
 | 
					        print("Invalid ftype: " + str(ftype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        sys.exit(1)
 | 
					        sys.exit(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
					fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
				
			||||||
@@ -70,14 +74,14 @@ num_parts = count_model_parts(dir_model)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
if num_parts > 1:
 | 
					if num_parts > 1:
 | 
				
			||||||
    print("gguf: Only models with a single datafile are supported.")
 | 
					    print("gguf: Only models with a single datafile are supported.")
 | 
				
			||||||
    sys.exit()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
 | 
					    sys.exit()
 | 
				
			||||||
 | 
					llm_arch = "llama"
 | 
				
			||||||
 | 
					gguf_writer = gguf.GGUFWriter(fname_out, arch=llm_arch)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: get model metadata")
 | 
					print("gguf: get model metadata")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
llm_arch = "llama"
 | 
					 | 
				
			||||||
block_count = hparams["num_hidden_layers"]
 | 
					block_count = hparams["num_hidden_layers"]
 | 
				
			||||||
head_count = hparams["num_attention_heads"]
 | 
					head_count = hparams["num_attention_heads"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -91,19 +95,18 @@ if "_name_or_path" in hparams:
 | 
				
			|||||||
else:
 | 
					else:
 | 
				
			||||||
    hf_repo = ""
 | 
					    hf_repo = ""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.add_architecture(llm_arch)
 | 
					gguf_writer.add_architecture()
 | 
				
			||||||
gguf_writer.add_name(last_dir)
 | 
					gguf_writer.add_name(last_dir)
 | 
				
			||||||
gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
 | 
					 | 
				
			||||||
gguf_writer.add_source_hf_repo(hf_repo)
 | 
					gguf_writer.add_source_hf_repo(hf_repo)
 | 
				
			||||||
gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth")
 | 
					gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
				
			||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
 | 
					gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | 
				
			||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | 
					gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
				
			||||||
gguf_writer.add_block_count(llm_arch, block_count)
 | 
					gguf_writer.add_block_count(block_count)
 | 
				
			||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | 
					gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
				
			||||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
					gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
				
			||||||
gguf_writer.add_head_count(llm_arch, head_count)
 | 
					gguf_writer.add_head_count(head_count)
 | 
				
			||||||
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
 | 
					gguf_writer.add_head_count_kv(head_count_kv)
 | 
				
			||||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
 | 
					gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# TOKENIZATION
 | 
					# TOKENIZATION
 | 
				
			||||||
@@ -129,15 +132,19 @@ if Path(dir_model + "/tokenizer.model").is_file():
 | 
				
			|||||||
        score = tokenizer.get_score(i)
 | 
					        score = tokenizer.get_score(i)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        toktype = 1  # defualt to normal token type
 | 
					        toktype = 1  # defualt to normal token type
 | 
				
			||||||
        if tokenizer.is_unknown(i): toktype = 2
 | 
					        if tokenizer.is_unknown(i):
 | 
				
			||||||
        if tokenizer.is_control(i): toktype = 3
 | 
					            toktype = 2
 | 
				
			||||||
 | 
					        if tokenizer.is_control(i):
 | 
				
			||||||
 | 
					            toktype = 3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # TODO: How to determinate if a token is user defined?
 | 
					        # TODO: How to determinate if a token is user defined?
 | 
				
			||||||
        # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | 
					        # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | 
				
			||||||
        # if tokenizer.is_user_defined(i): toktype = 4
 | 
					        # if tokenizer.is_user_defined(i): toktype = 4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if tokenizer.is_unused(i):  toktype = 5
 | 
					        if tokenizer.is_unused(i):
 | 
				
			||||||
        if tokenizer.is_byte(i):    toktype = 6
 | 
					            toktype = 5
 | 
				
			||||||
 | 
					        if tokenizer.is_byte(i):
 | 
				
			||||||
 | 
					            toktype = 6
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        tokens.append(text)
 | 
					        tokens.append(text)
 | 
				
			||||||
        scores.append(score)
 | 
					        scores.append(score)
 | 
				
			||||||
@@ -223,6 +230,7 @@ for part_name in part_names:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					        n_dims = len(data.shape)
 | 
				
			||||||
        data_dtype = data.dtype
 | 
					        data_dtype = data.dtype
 | 
				
			||||||
 | 
					        old_dtype = data_dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					        # if f32 desired, convert any float16 to float32
 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					        if ftype == 0 and data.dtype == np.float16:
 | 
				
			||||||
@@ -236,69 +244,19 @@ for part_name in part_names:
 | 
				
			|||||||
        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
				
			||||||
            data_dtype = np.float16
 | 
					            data_dtype = np.float16
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
 | 
					        print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data_dtype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
 | 
					        data = data.astype(data_dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        gguf_writer.add_tensor(name, data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: write header")
 | 
					print("gguf: write header")
 | 
				
			||||||
gguf_writer.write_header_to_file()
 | 
					gguf_writer.write_header_to_file()
 | 
				
			||||||
print("gguf: write metadata")
 | 
					print("gguf: write metadata")
 | 
				
			||||||
gguf_writer.write_kv_data_to_file()
 | 
					gguf_writer.write_kv_data_to_file()
 | 
				
			||||||
print("gguf: write tensor metadata")
 | 
					print("gguf: write tensors")
 | 
				
			||||||
gguf_writer.write_ti_data_to_file()
 | 
					gguf_writer.write_tensors_to_file()
 | 
				
			||||||
 | 
					 | 
				
			||||||
# tensor data
 | 
					 | 
				
			||||||
print("gguf: convert and write tensor data")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
for part_name in part_names:
 | 
					 | 
				
			||||||
    print("gguf: loading model part '"+ part_name + "'")
 | 
					 | 
				
			||||||
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for name in model_part.keys():
 | 
					 | 
				
			||||||
        data = model_part[name]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        old_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # we don't need these
 | 
					 | 
				
			||||||
        if name == "rope.freqs":
 | 
					 | 
				
			||||||
            continue
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # convert any unsupported data types to float32
 | 
					 | 
				
			||||||
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
					 | 
				
			||||||
            data = data.to(torch.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        data = data.squeeze().numpy()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # map tensor names
 | 
					 | 
				
			||||||
        if name.endswith(".weight") and name[:-7] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-7]] + ".weight"
 | 
					 | 
				
			||||||
        elif name.endswith(".bias") and name[:-5] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-5]] + ".bias"
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            print( "Can not map tensor '" + name + "'" )
 | 
					 | 
				
			||||||
            sys.exit()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					 | 
				
			||||||
        data_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					 | 
				
			||||||
            data = data.astype(np.float16)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gguf_writer.write_tensor_data(data)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.close()
 | 
					gguf_writer.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -18,26 +18,35 @@ NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# reverse HF permute back to original pth layout
 | 
					# reverse HF permute back to original pth layout
 | 
				
			||||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
 | 
					# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
 | 
					def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
 | 
				
			||||||
    if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head
 | 
					    if n_kv_head is not None and n_head != n_kv_head:
 | 
				
			||||||
 | 
					        n_head //= n_kv_head
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
					    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
				
			||||||
            .swapaxes(1, 2)
 | 
					            .swapaxes(1, 2)
 | 
				
			||||||
            .reshape(weights.shape))
 | 
					            .reshape(weights.shape))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def count_model_parts(dir_model: str) -> int:
 | 
					def count_model_parts(dir_model: str) -> int:
 | 
				
			||||||
    num_parts = 0
 | 
					    num_parts = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for filename in os.listdir(dir_model):
 | 
					    for filename in os.listdir(dir_model):
 | 
				
			||||||
        if filename.startswith("pytorch_model-"):
 | 
					        if filename.startswith("pytorch_model-"):
 | 
				
			||||||
            num_parts += 1
 | 
					            num_parts += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if num_parts > 0:
 | 
					    if num_parts > 0:
 | 
				
			||||||
        print("gguf: found " + str(num_parts) + " model parts")
 | 
					        print("gguf: found " + str(num_parts) + " model parts")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return num_parts
 | 
					    return num_parts
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if len(sys.argv) < 3:
 | 
					if len(sys.argv) < 3:
 | 
				
			||||||
    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
					    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
				
			||||||
    print("  ftype == 0 -> float32")
 | 
					    print("  ftype == 0 -> float32")
 | 
				
			||||||
    print("  ftype == 1 -> float16")
 | 
					    print("  ftype == 1 -> float16")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sys.exit(1)
 | 
					    sys.exit(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -49,7 +58,8 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
 | 
				
			|||||||
# possible tensor data types
 | 
					# possible tensor data types
 | 
				
			||||||
#   ftype == 0 -> float32
 | 
					#   ftype == 0 -> float32
 | 
				
			||||||
#   ftype == 1 -> float16
 | 
					#   ftype == 1 -> float16
 | 
				
			||||||
#
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# map from ftype to string
 | 
					# map from ftype to string
 | 
				
			||||||
ftype_str = ["f32", "f16"]
 | 
					ftype_str = ["f32", "f16"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -58,6 +68,7 @@ if len(sys.argv) > 2:
 | 
				
			|||||||
    ftype = int(sys.argv[2])
 | 
					    ftype = int(sys.argv[2])
 | 
				
			||||||
    if ftype < 0 or ftype > 1:
 | 
					    if ftype < 0 or ftype > 1:
 | 
				
			||||||
        print("Invalid ftype: " + str(ftype))
 | 
					        print("Invalid ftype: " + str(ftype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        sys.exit(1)
 | 
					        sys.exit(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
					fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
				
			||||||
@@ -69,17 +80,17 @@ with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
if hparams["architectures"][0] != "LlamaForCausalLM":
 | 
					if hparams["architectures"][0] != "LlamaForCausalLM":
 | 
				
			||||||
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
					    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sys.exit()
 | 
					    sys.exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# get number of model parts
 | 
					# get number of model parts
 | 
				
			||||||
num_parts = count_model_parts(dir_model)
 | 
					num_parts = count_model_parts(dir_model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
 | 
					gguf_writer = gguf.GGUFWriter(fname_out, arch="llama")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: get model metadata")
 | 
					print("gguf: get model metadata")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
llm_arch = "llama"
 | 
					 | 
				
			||||||
block_count = hparams["num_hidden_layers"]
 | 
					block_count = hparams["num_hidden_layers"]
 | 
				
			||||||
head_count = hparams["num_attention_heads"]
 | 
					head_count = hparams["num_attention_heads"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -99,22 +110,22 @@ elif "max_position_embeddings" in hparams:
 | 
				
			|||||||
    ctx_length = hparams["max_position_embeddings"]
 | 
					    ctx_length = hparams["max_position_embeddings"]
 | 
				
			||||||
else:
 | 
					else:
 | 
				
			||||||
    print("gguf: can not find ctx length parameter.")
 | 
					    print("gguf: can not find ctx length parameter.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sys.exit()
 | 
					    sys.exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.add_architecture(llm_arch)
 | 
					gguf_writer.add_architecture()
 | 
				
			||||||
gguf_writer.add_name(last_dir)
 | 
					gguf_writer.add_name(last_dir)
 | 
				
			||||||
gguf_writer.add_file_type("All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
 | 
					 | 
				
			||||||
gguf_writer.add_source_hf_repo(hf_repo)
 | 
					gguf_writer.add_source_hf_repo(hf_repo)
 | 
				
			||||||
gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth")
 | 
					gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
				
			||||||
gguf_writer.add_context_length(llm_arch, ctx_length)
 | 
					gguf_writer.add_context_length(ctx_length)
 | 
				
			||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | 
					gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
				
			||||||
gguf_writer.add_block_count(llm_arch, block_count)
 | 
					gguf_writer.add_block_count(block_count)
 | 
				
			||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | 
					gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
				
			||||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
					gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
				
			||||||
gguf_writer.add_head_count(llm_arch, head_count)
 | 
					gguf_writer.add_head_count(head_count)
 | 
				
			||||||
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
 | 
					gguf_writer.add_head_count_kv(head_count_kv)
 | 
				
			||||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
 | 
					gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# TOKENIZATION
 | 
					# TOKENIZATION
 | 
				
			||||||
@@ -140,15 +151,19 @@ if Path(dir_model + "/tokenizer.model").is_file():
 | 
				
			|||||||
        score = tokenizer.get_score(i)
 | 
					        score = tokenizer.get_score(i)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        toktype = 1  # defualt to normal token type
 | 
					        toktype = 1  # defualt to normal token type
 | 
				
			||||||
        if tokenizer.is_unknown(i): toktype = 2
 | 
					        if tokenizer.is_unknown(i):
 | 
				
			||||||
        if tokenizer.is_control(i): toktype = 3
 | 
					            toktype = 2
 | 
				
			||||||
 | 
					        if tokenizer.is_control(i):
 | 
				
			||||||
 | 
					            toktype = 3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # TODO: How to determinate if a token is user defined?
 | 
					        # TODO: How to determinate if a token is user defined?
 | 
				
			||||||
        # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | 
					        # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | 
				
			||||||
        # if tokenizer.is_user_defined(i): toktype = 4
 | 
					        # if tokenizer.is_user_defined(i): toktype = 4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if tokenizer.is_unused(i):  toktype = 5
 | 
					        if tokenizer.is_unused(i):
 | 
				
			||||||
        if tokenizer.is_byte(i):    toktype = 6
 | 
					            toktype = 5
 | 
				
			||||||
 | 
					        if tokenizer.is_byte(i):
 | 
				
			||||||
 | 
					            toktype = 6
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        tokens.append(text)
 | 
					        tokens.append(text)
 | 
				
			||||||
        scores.append(score)
 | 
					        scores.append(score)
 | 
				
			||||||
@@ -239,10 +254,12 @@ for part_name in part_names:
 | 
				
			|||||||
            name = tensor_map[name[:-5]] + ".bias"
 | 
					            name = tensor_map[name[:-5]] + ".bias"
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            print("Can not map tensor '" + name + "'")
 | 
					            print("Can not map tensor '" + name + "'")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            sys.exit()
 | 
					            sys.exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					        n_dims = len(data.shape)
 | 
				
			||||||
        data_dtype = data.dtype
 | 
					        data_dtype = data.dtype
 | 
				
			||||||
 | 
					        old_dtype = data_dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					        # if f32 desired, convert any float16 to float32
 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					        if ftype == 0 and data.dtype == np.float16:
 | 
				
			||||||
@@ -256,78 +273,19 @@ for part_name in part_names:
 | 
				
			|||||||
        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
				
			||||||
            data_dtype = np.float16
 | 
					            data_dtype = np.float16
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
 | 
					        data = data.astype(data_dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
 | 
					        print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        gguf_writer.add_tensor(name, data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: write header")
 | 
					print("gguf: write header")
 | 
				
			||||||
gguf_writer.write_header_to_file()
 | 
					gguf_writer.write_header_to_file()
 | 
				
			||||||
print("gguf: write metadata")
 | 
					print("gguf: write metadata")
 | 
				
			||||||
gguf_writer.write_kv_data_to_file()
 | 
					gguf_writer.write_kv_data_to_file()
 | 
				
			||||||
print("gguf: write tensor metadata")
 | 
					print("gguf: write tensors")
 | 
				
			||||||
gguf_writer.write_ti_data_to_file()
 | 
					gguf_writer.write_tensors_to_file()
 | 
				
			||||||
 | 
					 | 
				
			||||||
# tensor data
 | 
					 | 
				
			||||||
print("gguf: convert and write tensor data")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
if num_parts == 0:
 | 
					 | 
				
			||||||
    part_names = ("pytorch_model.bin",)
 | 
					 | 
				
			||||||
else:
 | 
					 | 
				
			||||||
    part_names = (
 | 
					 | 
				
			||||||
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
for part_name in part_names:
 | 
					 | 
				
			||||||
    print("gguf: loading model part '"+ part_name + "'")
 | 
					 | 
				
			||||||
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for name in model_part.keys():
 | 
					 | 
				
			||||||
        data = model_part[name]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        old_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # we don't need these
 | 
					 | 
				
			||||||
        if name.endswith(".rotary_emb.inv_freq"):
 | 
					 | 
				
			||||||
            continue
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # convert any unsupported data types to float32
 | 
					 | 
				
			||||||
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
					 | 
				
			||||||
            data = data.to(torch.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        data = data.squeeze().numpy()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # reverse permute these
 | 
					 | 
				
			||||||
        if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | 
					 | 
				
			||||||
            data = reverse_hf_permute(data, head_count, head_count_kv)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # map tensor names
 | 
					 | 
				
			||||||
        if name.endswith(".weight") and name[:-7] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-7]] + ".weight"
 | 
					 | 
				
			||||||
        elif name.endswith(".bias") and name[:-5] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-5]] + ".bias"
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            print( "Can not map tensor '" + name + "'" )
 | 
					 | 
				
			||||||
            sys.exit()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					 | 
				
			||||||
        data_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					 | 
				
			||||||
            data = data.astype(np.float16)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        print(name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gguf_writer.write_tensor_to_file(data)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.close()
 | 
					gguf_writer.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										61
									
								
								gguf.py
									
									
									
									
									
								
							
							
						
						
									
										61
									
								
								gguf.py
									
									
									
									
									
								
							@@ -1,11 +1,7 @@
 | 
				
			|||||||
"""TODOs
 | 
					import shutil
 | 
				
			||||||
1. Implement writers for known architectures, LLaMA in particular.
 | 
					 | 
				
			||||||
2. Add docstrings from the format specs.
 | 
					 | 
				
			||||||
3. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
 | 
					 | 
				
			||||||
"""
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import struct
 | 
					import struct
 | 
				
			||||||
 | 
					import tempfile
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from enum import IntEnum, auto
 | 
					from enum import IntEnum, auto
 | 
				
			||||||
@@ -27,7 +23,6 @@ KEY_GENERAL_NAME                 = "general.name"
 | 
				
			|||||||
KEY_GENERAL_AUTHOR               = "general.author"
 | 
					KEY_GENERAL_AUTHOR               = "general.author"
 | 
				
			||||||
KEY_GENERAL_URL                  = "general.url"
 | 
					KEY_GENERAL_URL                  = "general.url"
 | 
				
			||||||
KEY_GENERAL_DESCRIPTION          = "general.description"
 | 
					KEY_GENERAL_DESCRIPTION          = "general.description"
 | 
				
			||||||
KEY_GENERAL_FILE_TYPE            = "general.file_type"
 | 
					 | 
				
			||||||
KEY_GENERAL_LICENSE              = "general.license"
 | 
					KEY_GENERAL_LICENSE              = "general.license"
 | 
				
			||||||
KEY_GENERAL_SOURCE_URL           = "general.source.url"
 | 
					KEY_GENERAL_SOURCE_URL           = "general.source.url"
 | 
				
			||||||
KEY_GENERAL_SOURCE_HF_REPO       = "general.source.hugginface.repository"
 | 
					KEY_GENERAL_SOURCE_HF_REPO       = "general.source.hugginface.repository"
 | 
				
			||||||
@@ -70,6 +65,7 @@ KEY_TOKENIZER_RWKV       = "tokenizer.rwkv.world"
 | 
				
			|||||||
# recommended mapping of model tensor names for storage in gguf
 | 
					# recommended mapping of model tensor names for storage in gguf
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class MODEL_ARCH(IntEnum):
 | 
					class MODEL_ARCH(IntEnum):
 | 
				
			||||||
    LLAMA   = auto()
 | 
					    LLAMA   = auto()
 | 
				
			||||||
    FALCON  = auto()
 | 
					    FALCON  = auto()
 | 
				
			||||||
@@ -78,6 +74,7 @@ class MODEL_ARCH(IntEnum):
 | 
				
			|||||||
    GPTNEOX = auto()
 | 
					    GPTNEOX = auto()
 | 
				
			||||||
    MPT     = auto()
 | 
					    MPT     = auto()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class MODEL_TENSOR(IntEnum):
 | 
					class MODEL_TENSOR(IntEnum):
 | 
				
			||||||
    TOKEN_EMBD    = auto()
 | 
					    TOKEN_EMBD    = auto()
 | 
				
			||||||
    POS_EMBD      = auto()
 | 
					    POS_EMBD      = auto()
 | 
				
			||||||
@@ -97,6 +94,7 @@ class MODEL_TENSOR(IntEnum):
 | 
				
			|||||||
    FFN_UP        = auto()
 | 
					    FFN_UP        = auto()
 | 
				
			||||||
    FFN_NORM      = auto()
 | 
					    FFN_NORM      = auto()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
MODEL_ARCH_NAMES = {
 | 
					MODEL_ARCH_NAMES = {
 | 
				
			||||||
    MODEL_ARCH.LLAMA:   "llama",
 | 
					    MODEL_ARCH.LLAMA:   "llama",
 | 
				
			||||||
    MODEL_ARCH.FALCON:  "falcon",
 | 
					    MODEL_ARCH.FALCON:  "falcon",
 | 
				
			||||||
@@ -148,6 +146,7 @@ MODEL_TENSOR_SKIP = {
 | 
				
			|||||||
    ],
 | 
					    ],
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# TODO: the following helper functions should be removed
 | 
					# TODO: the following helper functions should be removed
 | 
				
			||||||
#       instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
 | 
					#       instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
 | 
				
			||||||
#       however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
 | 
					#       however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
 | 
				
			||||||
@@ -160,6 +159,7 @@ def should_skip_tensor_TMP(arch : MODEL_ARCH, n_blocks : int, name : str) -> boo
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    return False
 | 
					    return False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
 | 
					def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
 | 
				
			||||||
    tensor_map = {}
 | 
					    tensor_map = {}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -312,6 +312,7 @@ def get_tensor_name_map(arch : MODEL_ARCH, n_blocks : int) -> dict:
 | 
				
			|||||||
# implementation
 | 
					# implementation
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class GGMLQuantizationType(IntEnum):
 | 
					class GGMLQuantizationType(IntEnum):
 | 
				
			||||||
    F32 = 0
 | 
					    F32 = 0
 | 
				
			||||||
    F16 = 1
 | 
					    F16 = 1
 | 
				
			||||||
@@ -481,6 +482,19 @@ class GGUFWriter:
 | 
				
			|||||||
        self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
 | 
					        self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
 | 
				
			||||||
        self.ti_data_count += 1
 | 
					        self.ti_data_count += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def add_tensor(self, name: str, tensor: np.ndarray):
 | 
				
			||||||
 | 
					        if not hasattr(self, "temp_file"):
 | 
				
			||||||
 | 
					            self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
 | 
				
			||||||
 | 
					            self.temp_file.seek(0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.add_tensor_info(name, tensor.shape, tensor.dtype, tensor.nbytes)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        tensor.tofile(self.temp_file)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | 
				
			||||||
 | 
					        if pad != 0:
 | 
				
			||||||
 | 
					            self.temp_file.write(bytes([0] * pad))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def write_tensor_data(self, tensor: np.ndarray):
 | 
					    def write_tensor_data(self, tensor: np.ndarray):
 | 
				
			||||||
        pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
 | 
					        pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
 | 
				
			||||||
        if pad != 0:
 | 
					        if pad != 0:
 | 
				
			||||||
@@ -492,6 +506,19 @@ class GGUFWriter:
 | 
				
			|||||||
        if pad != 0:
 | 
					        if pad != 0:
 | 
				
			||||||
            self.fout.write(bytes([0] * pad))
 | 
					            self.fout.write(bytes([0] * pad))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def write_tensors_to_file(self):
 | 
				
			||||||
 | 
					        self.write_ti_data_to_file()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
 | 
				
			||||||
 | 
					        if pad != 0:
 | 
				
			||||||
 | 
					            self.fout.write(bytes([0] * pad))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.temp_file.seek(0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        shutil.copyfileobj(self.temp_file, self.fout)
 | 
				
			||||||
 | 
					        self.flush()
 | 
				
			||||||
 | 
					        self.temp_file.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def flush(self):
 | 
					    def flush(self):
 | 
				
			||||||
        self.fout.flush()
 | 
					        self.fout.flush()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -513,9 +540,6 @@ class GGUFWriter:
 | 
				
			|||||||
    def add_description(self, description: str):
 | 
					    def add_description(self, description: str):
 | 
				
			||||||
        self.add_string(KEY_GENERAL_DESCRIPTION, description)
 | 
					        self.add_string(KEY_GENERAL_DESCRIPTION, description)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def add_file_type(self, file_type: str):
 | 
					 | 
				
			||||||
        self.add_string(KEY_GENERAL_FILE_TYPE, file_type)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def add_source_url(self, url: str):
 | 
					    def add_source_url(self, url: str):
 | 
				
			||||||
        self.add_string(KEY_GENERAL_SOURCE_URL, url)
 | 
					        self.add_string(KEY_GENERAL_SOURCE_URL, url)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -618,23 +642,28 @@ class GGUFWriter:
 | 
				
			|||||||
    def add_pad_token_id(self, id: int):
 | 
					    def add_pad_token_id(self, id: int):
 | 
				
			||||||
        self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
 | 
					        self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Example usage:
 | 
					# Example usage:
 | 
				
			||||||
if __name__ == "__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
    # Example usage with a file
 | 
					    # Example usage with a file
 | 
				
			||||||
    gguf_writer = GGUFWriter("example.gguf", "llama")
 | 
					    gguf_writer = GGUFWriter("example.gguf", "llama")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    gguf_writer.add_architecture()
 | 
				
			||||||
 | 
					    gguf_writer.add_block_count(12)
 | 
				
			||||||
    gguf_writer.add_uint32("answer", 42)  # Write a 32-bit integer
 | 
					    gguf_writer.add_uint32("answer", 42)  # Write a 32-bit integer
 | 
				
			||||||
    gguf_writer.add_float32("answer_in_float", 42.0)  # Write a 32-bit float
 | 
					    gguf_writer.add_float32("answer_in_float", 42.0)  # Write a 32-bit float
 | 
				
			||||||
    gguf_writer.add_custom_alignment(64)
 | 
					    gguf_writer.add_custom_alignment(64)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    tensor1 = np.ones((32,), dtype=np.float32) * 100.0
 | 
					    tensor1 = np.ones((32,), dtype=np.float32) * 100.0
 | 
				
			||||||
    tensor2 = np.ones((32,), dtype=np.float32) * 101.0
 | 
					    tensor2 = np.ones((64,), dtype=np.float32) * 101.0
 | 
				
			||||||
    gguf_writer.add_tensor_info("tensor0", tensor1)
 | 
					    tensor3 = np.ones((96,), dtype=np.float32) * 102.0
 | 
				
			||||||
    gguf_writer.add_tensor_info("tensor1", tensor2)
 | 
					
 | 
				
			||||||
 | 
					    gguf_writer.add_tensor("tensor1", tensor1)
 | 
				
			||||||
 | 
					    gguf_writer.add_tensor("tensor2", tensor2)
 | 
				
			||||||
 | 
					    gguf_writer.add_tensor("tensor3", tensor3)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    gguf_writer.write_header_to_file()
 | 
					    gguf_writer.write_header_to_file()
 | 
				
			||||||
    gguf_writer.write_kv_data_to_file()
 | 
					    gguf_writer.write_kv_data_to_file()
 | 
				
			||||||
    gguf_writer.write_ti_data_to_file()
 | 
					    gguf_writer.write_tensors_to_file()
 | 
				
			||||||
    gguf_writer.write_tensor_data(tensor1)
 | 
					 | 
				
			||||||
    gguf_writer.write_tensor_data(tensor2)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    gguf_writer.close()
 | 
					    gguf_writer.close()
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user