mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	context : simplify output counting logic during decode (#14142)
* batch : remove logits_all flag ggml-ci * context : simplify output counting logic during decode ggml-ci * cont : fix comments
This commit is contained in:
		| @@ -306,9 +306,10 @@ llama_batch_allocr::llama_batch_allocr(struct llama_batch in_batch, llama_pos p0 | ||||
|         batch.seq_id = seq_id.data(); | ||||
|     } | ||||
|     if (!batch.logits) { | ||||
|         logits.resize(batch.n_tokens); | ||||
|         logits[logits.size() - 1] = true; | ||||
|         batch.logits = logits.data(); | ||||
|         // by default return the output only for the last token | ||||
|         output.resize(batch.n_tokens); | ||||
|         output[output.size() - 1] = true; | ||||
|         batch.logits = output.data(); | ||||
|     } | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -85,7 +85,7 @@ struct llama_batch_allocr { | ||||
|     std::vector<llama_pos>      pos; | ||||
|     std::vector<int32_t>        n_seq_id; | ||||
|     std::vector<llama_seq_id *> seq_id; | ||||
|     std::vector<int8_t>         logits; | ||||
|     std::vector<int8_t>         output; | ||||
|  | ||||
|     // optionally fulfill the batch returned by llama_batch_get_one | ||||
|     llama_batch_allocr(struct llama_batch in_batch, llama_pos p0); | ||||
|   | ||||
| @@ -758,6 +758,7 @@ int llama_context::encode(llama_batch & inp_batch) { | ||||
|         t_compute_start_us = ggml_time_us(); | ||||
|     } | ||||
|  | ||||
|     // TODO: this clear of the buffer can easily be forgotten - need something better | ||||
|     embd_seq.clear(); | ||||
|  | ||||
|     n_queued_tokens += n_tokens; | ||||
| @@ -940,6 +941,25 @@ int llama_context::decode(llama_batch & inp_batch) { | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // this indicates we are doing pooled embedding | ||||
|     const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE; | ||||
|  | ||||
|     int64_t n_outputs_all = 0; | ||||
|  | ||||
|     // count outputs | ||||
|     for (uint32_t i = 0; i < n_tokens_all; ++i) { | ||||
|         n_outputs_all += batch.logits[i] != 0; | ||||
|     } | ||||
|  | ||||
|     if (embd_pooled) { | ||||
|         // require that all tokens are output | ||||
|         if (n_outputs_all != n_tokens_all) { | ||||
|             LLAMA_LOG_ERROR("%s: pooled embedding requires that all tokens are output (n_outputs_all = %" PRId64 ", n_tokens_all = %" PRId64 ")\n", | ||||
|                     __func__, n_outputs_all, n_tokens_all); | ||||
|             return -1; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     GGML_ASSERT(n_tokens_all <= cparams.n_batch); | ||||
|  | ||||
|     GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); | ||||
| @@ -949,25 +969,9 @@ int llama_context::decode(llama_batch & inp_batch) { | ||||
|     } | ||||
|     n_queued_tokens += n_tokens_all; | ||||
|  | ||||
|     // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens | ||||
|     const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE; | ||||
|  | ||||
|     // TODO: this clear of the buffer can easily be forgotten - need something better | ||||
|     embd_seq.clear(); | ||||
|  | ||||
|     int64_t n_outputs_all = 0; | ||||
|  | ||||
|     // count outputs | ||||
|     if (batch.logits && !embd_pooled) { | ||||
|         for (uint32_t i = 0; i < n_tokens_all; ++i) { | ||||
|             n_outputs_all += batch.logits[i] != 0; | ||||
|         } | ||||
|     } else if (embd_pooled) { | ||||
|         n_outputs_all = n_tokens_all; | ||||
|     } else { | ||||
|         // keep last output only | ||||
|         n_outputs_all = 1; | ||||
|     } | ||||
|  | ||||
|     bool did_optimize = false; | ||||
|  | ||||
|     // handle any pending defrags/shifts | ||||
| @@ -1029,7 +1033,7 @@ int llama_context::decode(llama_batch & inp_batch) { | ||||
|     do { | ||||
|         const auto & ubatch = mstate->get_ubatch(); | ||||
|  | ||||
|         // count the outputs in this u_batch | ||||
|         // count the outputs in this ubatch | ||||
|         { | ||||
|             int32_t n_outputs_new = 0; | ||||
|  | ||||
| @@ -2073,7 +2077,7 @@ void llama_context::opt_epoch_iter( | ||||
|  | ||||
|         n_queued_tokens += n_tokens_all; | ||||
|  | ||||
|         // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens | ||||
|         // this indicates we are doing pooled embedding | ||||
|         const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE; | ||||
|  | ||||
|         embd_seq.clear(); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov