mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llm : add MPT support (#3417)
* CUDA: added support for ggml_clamp (see also: https://github.com/ggerganov/ggml/issues/545) * mpt : added an implementation based (mostly) on falcon integration, modified with deltas from ggml/examples/mpt * mpt : protect against "clip_qkv": null in mpt-7b * mpt : quick fix to avoid "Strange model" warning when quantizing MPT models * mpt : addendum to changeset:84e30e8 - leave parameter clamp_kqv out from metadata rather than use 0.0 to indicate "no clamping" (more compliant with the current GGUF spec?) * mpt : standardized all tensor names to follow GGUF spec * mpt : addendum to changeset:1be89c40 - use "req" parameter of GGUF_GET_KEY macro instead of duplicate code * mpt : fixed comment s/gptneox/mpt/ * mpt : remove tabs, trailing whitespace * mpt : removed ne01 + n_past == ne00 assertion from alibi (cuda/f32) and rope_shift from build_mpt * mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252 * comment out n_past instead of marking it unused * mpt : removed hardcoded +178 from convert script in favor of utilizing hparams["vocab_size"] * mpt : remove unused tokenizer_json in convert script * ggml : remove obsolete n_past assert in ggml_alibi * llama : print clam_kqv and max_alibi_bias hparams --------- Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		
							
								
								
									
										425
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										425
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -424,6 +424,14 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = | ||||
|         LLM_ARCH_MPT, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,          "output" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" }, | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
| @@ -1011,6 +1019,9 @@ struct llama_hparams { | ||||
|     float rope_freq_base_train; | ||||
|     float rope_freq_scale_train; | ||||
|  | ||||
|     float f_clamp_kqv; | ||||
|     float f_max_alibi_bias; | ||||
|  | ||||
|     bool operator!=(const llama_hparams & other) const { | ||||
|         if (this->vocab_only != other.vocab_only) return true; | ||||
|         if (this->n_vocab != other.n_vocab) return true; | ||||
| @@ -2060,6 +2071,20 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_MPT: | ||||
|             { | ||||
|                 hparams.f_clamp_kqv = 0.0f; | ||||
|  | ||||
|                 GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); | ||||
|                 GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV)); | ||||
|                 GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS)); | ||||
|  | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 32: model.type = e_model::MODEL_7B; break; | ||||
|                     case 48: model.type = e_model::MODEL_30B; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         default: (void)0; | ||||
|     } | ||||
|  | ||||
| @@ -2204,6 +2229,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { | ||||
|     LLAMA_LOG_INFO("%s: n_gqa            = %u\n",     __func__, hparams.n_gqa()); | ||||
|     LLAMA_LOG_INFO("%s: f_norm_eps       = %.1e\n",   __func__, hparams.f_norm_eps); | ||||
|     LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps); | ||||
|     LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv); | ||||
|     LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias); | ||||
|     LLAMA_LOG_INFO("%s: n_ff             = %u\n",     __func__, hparams.n_ff); | ||||
|     LLAMA_LOG_INFO("%s: freq_base_train  = %.1f\n",   __func__, hparams.rope_freq_base_train); | ||||
|     LLAMA_LOG_INFO("%s: freq_scale_train = %g\n",     __func__, hparams.rope_freq_scale_train); | ||||
| @@ -2649,6 +2676,73 @@ static void llm_load_tensors( | ||||
|                         layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i),   {64}, backend); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_MPT: | ||||
|                 { | ||||
|                     model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); | ||||
|  | ||||
|                     // output | ||||
|                     { | ||||
|                         ggml_backend_type backend_norm; | ||||
|                         ggml_backend_type backend_output; | ||||
|  | ||||
|                         if (n_gpu_layers > int(n_layer)) { | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
|                         } | ||||
|  | ||||
|                         model.output_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd},          backend_norm); | ||||
|                         model.output        = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, backend_output); | ||||
|  | ||||
|                         if (backend_norm == GGML_BACKEND_GPU) { | ||||
|                             vram_weights += ggml_nbytes(model.output_norm); | ||||
|                         } | ||||
|                         if (backend_output == GGML_BACKEND_GPU_SPLIT) { | ||||
|                             vram_weights += ggml_nbytes(model.output); | ||||
|                         } | ||||
|                     } | ||||
|  | ||||
|                     const uint32_t n_ff = hparams.n_ff; | ||||
|  | ||||
|                     const int i_gpu_start = n_layer - n_gpu_layers; | ||||
|  | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
|                         layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); | ||||
|                         layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split); | ||||
|                         layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd},     backend_split); | ||||
|  | ||||
|                         layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); | ||||
|  | ||||
|                         layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, backend_split); | ||||
|                         layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, backend_split); | ||||
|  | ||||
|                         if (backend == GGML_BACKEND_GPU) { | ||||
|                             vram_weights += | ||||
|                                 ggml_nbytes(layer.attn_norm) + | ||||
|                                 ggml_nbytes(layer.wqkv)      + | ||||
|                                 ggml_nbytes(layer.wo)        + | ||||
|                                 ggml_nbytes(layer.ffn_norm)  + | ||||
|                                 ggml_nbytes(layer.w2)        + | ||||
|                                 ggml_nbytes(layer.w3); | ||||
|                         } | ||||
|                     } | ||||
|                 } break; | ||||
|             default: | ||||
|                 throw std::runtime_error("unknown architecture"); | ||||
|         } | ||||
| @@ -4505,7 +4599,6 @@ static struct ggml_cgraph * llm_build_starcoder( | ||||
|     return gf; | ||||
| } | ||||
|  | ||||
|  | ||||
| static struct ggml_cgraph * llm_build_persimmon( | ||||
|          llama_context & lctx, | ||||
|      const llama_batch & batch) { | ||||
| @@ -4903,6 +4996,326 @@ static struct ggml_cgraph * llm_build_persimmon( | ||||
|     return gf; | ||||
| } | ||||
|  | ||||
| static struct ggml_cgraph * llm_build_mpt( | ||||
|          llama_context & lctx, | ||||
|      const llama_batch & batch) { | ||||
|     const auto & model   = lctx.model; | ||||
|     const auto & hparams = model.hparams; | ||||
|     const auto & cparams = lctx.cparams; | ||||
|  | ||||
|     const auto & kv_self = lctx.kv_self; | ||||
|  | ||||
|     GGML_ASSERT(!!kv_self.ctx); | ||||
|  | ||||
|     const int64_t n_embd      = hparams.n_embd; | ||||
|     const int64_t n_layer     = hparams.n_layer; | ||||
|     const int64_t n_ctx       = cparams.n_ctx; | ||||
|     const int64_t n_head      = hparams.n_head; | ||||
|     const int64_t n_head_kv   = hparams.n_head_kv; // == n_head for MPT, as there's no MQA/GQA | ||||
|     const int64_t n_embd_head = hparams.n_embd_head(); | ||||
|     const int64_t n_embd_gqa  = hparams.n_embd_gqa(); | ||||
|  | ||||
|     const float norm_eps       = hparams.f_norm_eps; | ||||
|     const float clamp_kqv      = hparams.f_clamp_kqv; | ||||
|     const float max_alibi_bias = hparams.f_max_alibi_bias; | ||||
|  | ||||
|     const int n_gpu_layers = model.n_gpu_layers; | ||||
|  | ||||
|     const int32_t n_tokens = batch.n_tokens; | ||||
|     const int32_t n_kv     = ggml_allocr_is_measure(lctx.alloc) ? n_ctx            : kv_self.n; | ||||
|     const int32_t kv_head  = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; | ||||
|  | ||||
|     //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n", | ||||
|     //        kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift); | ||||
|  | ||||
|     auto & buf_compute = lctx.buf_compute; | ||||
|  | ||||
|     struct ggml_init_params params = { | ||||
|         /*.mem_size   =*/ buf_compute.size, | ||||
|         /*.mem_buffer =*/ buf_compute.data, | ||||
|         /*.no_alloc   =*/ false, | ||||
|     }; | ||||
|  | ||||
|     params.no_alloc = true; | ||||
|  | ||||
|     struct ggml_context * ctx0 = ggml_init(params); | ||||
|  | ||||
|     ggml_cgraph * gf = ggml_new_graph(ctx0); | ||||
|  | ||||
|     struct ggml_tensor * cur; | ||||
|     struct ggml_tensor * inpL; | ||||
|  | ||||
|     //int warmup = 0; | ||||
|     if (batch.token) { | ||||
|         struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); | ||||
|  | ||||
|         ggml_allocr_alloc(lctx.alloc, inp_tokens); | ||||
|         if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|             memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); | ||||
|             //warmup = ((uint32_t*) inp_tokens->data)[0] == 0; | ||||
|         } | ||||
|  | ||||
|         ggml_set_name(inp_tokens, "inp_tokens"); | ||||
|  | ||||
|         inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); | ||||
|     } else { | ||||
| #ifdef GGML_USE_MPI | ||||
|         GGML_ASSERT(false && "not implemented"); | ||||
| #endif | ||||
|  | ||||
|         inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); | ||||
|  | ||||
|         ggml_allocr_alloc(lctx.alloc, inpL); | ||||
|         if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|             memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     const int i_gpu_start = n_layer - n_gpu_layers; | ||||
|     (void) i_gpu_start; | ||||
|  | ||||
|     // offload functions set the tensor output backend to GPU | ||||
|     // tensors are GPU-accelerated if any input or the output has been offloaded | ||||
|     offload_func_t offload_func_nr = llama_nop; // nr = non-repeating | ||||
|     offload_func_t offload_func_kq = llama_nop; | ||||
|     offload_func_t offload_func_v  = llama_nop; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|     if (n_gpu_layers > n_layer) { | ||||
|         offload_func_nr = ggml_cuda_assign_buffers_no_alloc; | ||||
|     } | ||||
|     if (n_gpu_layers > n_layer + 1) { | ||||
|         offload_func_v  = ggml_cuda_assign_buffers_no_alloc; | ||||
|     } | ||||
|     if (n_gpu_layers > n_layer + 2) { | ||||
|         offload_func_kq = ggml_cuda_assign_buffers_no_alloc; | ||||
|     } | ||||
| #endif // GGML_USE_CUBLAS | ||||
|  | ||||
|     // KQ_scale | ||||
|     struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); | ||||
|     ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); | ||||
|     ggml_allocr_alloc(lctx.alloc, KQ_scale); | ||||
|     if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|         ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); | ||||
|     } | ||||
|  | ||||
|     // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|     struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); | ||||
|     offload_func_kq(KQ_mask); | ||||
|     ggml_set_name(KQ_mask, "KQ_mask"); | ||||
|     ggml_allocr_alloc(lctx.alloc, KQ_mask); | ||||
|     if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|         float * data = (float *) KQ_mask->data; | ||||
|         memset(data, 0, ggml_nbytes(KQ_mask)); | ||||
|  | ||||
|         for (int h = 0; h < 1; ++h) { | ||||
|             for (int j = 0; j < n_tokens; ++j) { | ||||
|                 const llama_pos    pos    = batch.pos[j]; | ||||
|                 const llama_seq_id seq_id = batch.seq_id[j]; | ||||
|  | ||||
|                 for (int i = 0; i < n_kv; ++i) { | ||||
|                     if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { | ||||
|                         data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     for (int il = 0; il < n_layer; ++il) { | ||||
|         struct ggml_tensor * attn_norm; | ||||
|  | ||||
|         offload_func_t offload_func = llama_nop; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|         if (il >= i_gpu_start) { | ||||
|             offload_func = ggml_cuda_assign_buffers_no_alloc; | ||||
|         } | ||||
| #endif // GGML_USE_CUBLAS | ||||
|  | ||||
|         // self-attention | ||||
|         // TODO: refactor into common function (shared with LLaMA) | ||||
|         { | ||||
|             attn_norm = ggml_norm(ctx0, inpL, norm_eps); | ||||
|             offload_func(attn_norm); | ||||
|  | ||||
|             attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm); | ||||
|             offload_func(attn_norm); | ||||
|  | ||||
|             if (1) { | ||||
|                 cur = attn_norm; | ||||
|             } | ||||
|  | ||||
|             // compute QKV | ||||
|  | ||||
|             cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); | ||||
|             offload_func_kq(cur); | ||||
|  | ||||
|             if (clamp_kqv > 0.0f) { | ||||
|                 cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv); | ||||
|                 offload_func_kq(cur); | ||||
|             } | ||||
|  | ||||
|             const size_t wsize = ggml_type_size(cur->type); | ||||
|  | ||||
|             struct ggml_tensor * Qcur = ggml_view_3d( | ||||
|                 ctx0, cur, n_embd_head, n_head, n_tokens, | ||||
|                 wsize * n_embd_head, | ||||
|                 wsize * n_embd_head * (n_head + 2 * n_head_kv), | ||||
|                 0); | ||||
|             offload_func_kq(Qcur); | ||||
|  | ||||
|             struct ggml_tensor * Kcur = ggml_view_3d( | ||||
|                 ctx0, cur, n_embd_head, n_head_kv, n_tokens, | ||||
|                 wsize * n_embd_head, | ||||
|                 wsize * n_embd_head * (n_head + 2 * n_head_kv), | ||||
|                 wsize * n_embd_head *  n_head); | ||||
|             offload_func_kq(Kcur); | ||||
|  | ||||
|             struct ggml_tensor * tmpv = ggml_view_3d( | ||||
|                 ctx0, cur, n_embd_head, n_head_kv, n_tokens, | ||||
|                 wsize * n_embd_head, | ||||
|                 wsize * n_embd_head * (n_head + 2 * n_head_kv), | ||||
|                 wsize * n_embd_head * (n_head +     n_head_kv)); | ||||
|             offload_func_kq(Kcur); | ||||
|  | ||||
|             ggml_set_name(Qcur, "Qcur"); | ||||
|             ggml_set_name(Kcur, "Kcur"); | ||||
|  | ||||
|             { | ||||
|                 struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); | ||||
|                 offload_func_v(Vcur); | ||||
|                 offload_func_v(Vcur->src[0]->src[0]); | ||||
|                 ggml_set_name(Vcur, "Vcur"); | ||||
|  | ||||
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); | ||||
|                 offload_func_kq(k); | ||||
|                 ggml_set_name(k, "k"); | ||||
|  | ||||
|                 struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, | ||||
|                         (   n_ctx)*ggml_element_size(kv_self.v), | ||||
|                         (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); | ||||
|                 offload_func_v(v); | ||||
|  | ||||
|                 ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); | ||||
|                 ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); | ||||
|             offload_func_kq(Q); | ||||
|             ggml_set_name(Q, "Q"); | ||||
|  | ||||
|             struct ggml_tensor * K = | ||||
|                 ggml_view_3d(ctx0, kv_self.k, | ||||
|                         n_embd_head, n_kv, n_head_kv, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_gqa, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_head, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); | ||||
|             offload_func_kq(K); | ||||
|             ggml_set_name(K, "K"); | ||||
|  | ||||
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | ||||
|             offload_func_kq(KQ); | ||||
|             ggml_set_name(KQ, "KQ"); | ||||
|  | ||||
|             struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); | ||||
|             offload_func_kq(KQ_scaled); | ||||
|             ggml_set_name(KQ_scaled, "KQ_scaled"); | ||||
|  | ||||
|             // TODO: replace with ggml_add() | ||||
|             struct ggml_tensor * KQ_scaled_alibi = | ||||
|                 ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias); | ||||
|             offload_func_kq(KQ_scaled_alibi); | ||||
|             ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); | ||||
|  | ||||
|             struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); | ||||
|             offload_func_kq(KQ_masked); | ||||
|             ggml_set_name(KQ_masked, "KQ_masked"); | ||||
|  | ||||
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); | ||||
|             offload_func_v(KQ_soft_max); | ||||
|             ggml_set_name(KQ_soft_max, "KQ_soft_max"); | ||||
|  | ||||
|             struct ggml_tensor * V = | ||||
|                 ggml_view_3d(ctx0, kv_self.v, | ||||
|                         n_kv, n_embd_head, n_head_kv, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx*n_embd_head, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); | ||||
|             offload_func_v(V); | ||||
|             ggml_set_name(V, "V"); | ||||
|  | ||||
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | ||||
|             offload_func_v(KQV); | ||||
|             ggml_set_name(KQV, "KQV"); | ||||
|  | ||||
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | ||||
|             offload_func_v(KQV_merged); | ||||
|             ggml_set_name(KQV_merged, "KQV_merged"); | ||||
|  | ||||
|             cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); | ||||
|             offload_func_v(cur); | ||||
|             ggml_set_name(cur, "KQV_merged_contiguous"); | ||||
|  | ||||
|             cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "result_wo"); | ||||
|         } | ||||
|  | ||||
|         // Add the input | ||||
|         cur = ggml_add(ctx0, cur, inpL); | ||||
|         offload_func(cur); | ||||
|  | ||||
|         struct ggml_tensor * attn_out = cur; | ||||
|  | ||||
|         // feed forward | ||||
|         { | ||||
|             // Norm | ||||
|             { | ||||
|                 cur = ggml_norm(ctx0, attn_out, norm_eps); | ||||
|                 offload_func(cur); | ||||
|  | ||||
|                 cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); | ||||
|                 offload_func(cur); | ||||
|             } | ||||
|  | ||||
|             cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur); | ||||
|             offload_func(cur); | ||||
|  | ||||
|             cur = ggml_gelu(ctx0, cur); | ||||
|             offload_func(cur); | ||||
|             cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); | ||||
|             offload_func(cur); | ||||
|         } | ||||
|  | ||||
|         cur = ggml_add(ctx0, cur, attn_out); | ||||
|         offload_func(cur); | ||||
|         // input for next layer | ||||
|         inpL = cur; | ||||
|     } | ||||
|  | ||||
|     cur = inpL; | ||||
|  | ||||
|     // norm | ||||
|     { | ||||
|         cur = ggml_norm(ctx0, cur, norm_eps); | ||||
|         offload_func_nr(cur); | ||||
|  | ||||
|         cur = ggml_mul(ctx0, cur, model.output_norm); | ||||
|         ggml_set_name(cur, "result_norm"); | ||||
|     } | ||||
|  | ||||
|     cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|     ggml_set_name(cur, "result_output"); | ||||
|  | ||||
|     ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|     ggml_free(ctx0); | ||||
|  | ||||
|     return gf; | ||||
| } | ||||
|  | ||||
| static struct ggml_cgraph * llama_build_graph( | ||||
|          llama_context & lctx, | ||||
|      const llama_batch & batch) { | ||||
| @@ -4935,6 +5348,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm_build_refact(lctx, batch); | ||||
|             } break; | ||||
|         case LLM_ARCH_MPT: | ||||
|             { | ||||
|                 result = llm_build_mpt(lctx, batch); | ||||
|             } break; | ||||
|         default: | ||||
|             GGML_ASSERT(false); | ||||
|     } | ||||
| @@ -5065,7 +5482,8 @@ static int llama_decode_internal( | ||||
|     const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA || | ||||
|         model.arch == LLM_ARCH_BAICHUAN || | ||||
|         model.arch == LLM_ARCH_FALCON || | ||||
|         model.arch == LLM_ARCH_REFACT; | ||||
|         model.arch == LLM_ARCH_REFACT || | ||||
|         model.arch == LLM_ARCH_MPT; | ||||
|     const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3; | ||||
|     if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) { | ||||
|         n_threads = 1; | ||||
| @@ -7161,7 +7579,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s | ||||
|         const std::string name = ggml_get_name(meta); | ||||
|  | ||||
|         // TODO: avoid hardcoded tensor names - use the TN_* constants | ||||
|         if (name.find("attn_v.weight") != std::string::npos) { | ||||
|         if (name.find("attn_v.weight") != std::string::npos || | ||||
|             name.find("attn_qkv.weight") != std::string::npos) { | ||||
|             ++n_attention_wv; | ||||
|         } | ||||
|         else if (name.find("ffn_down.weight") != std::string::npos) { | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Jan Ploski
					Jan Ploski