mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	llm : add MPT support (#3417)
* CUDA: added support for ggml_clamp (see also: https://github.com/ggerganov/ggml/issues/545) * mpt : added an implementation based (mostly) on falcon integration, modified with deltas from ggml/examples/mpt * mpt : protect against "clip_qkv": null in mpt-7b * mpt : quick fix to avoid "Strange model" warning when quantizing MPT models * mpt : addendum to changeset:84e30e8 - leave parameter clamp_kqv out from metadata rather than use 0.0 to indicate "no clamping" (more compliant with the current GGUF spec?) * mpt : standardized all tensor names to follow GGUF spec * mpt : addendum to changeset:1be89c40 - use "req" parameter of GGUF_GET_KEY macro instead of duplicate code * mpt : fixed comment s/gptneox/mpt/ * mpt : remove tabs, trailing whitespace * mpt : removed ne01 + n_past == ne00 assertion from alibi (cuda/f32) and rope_shift from build_mpt * mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252 * comment out n_past instead of marking it unused * mpt : removed hardcoded +178 from convert script in favor of utilizing hparams["vocab_size"] * mpt : remove unused tokenizer_json in convert script * ggml : remove obsolete n_past assert in ggml_alibi * llama : print clam_kqv and max_alibi_bias hparams --------- Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		
							
								
								
									
										216
									
								
								convert-mpt-hf-to-gguf.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										216
									
								
								convert-mpt-hf-to-gguf.py
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,216 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
# HF mpt--> gguf conversion
 | 
			
		||||
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import json
 | 
			
		||||
import os
 | 
			
		||||
import struct
 | 
			
		||||
import sys
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
from typing import Any
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from transformers import AutoTokenizer  # type: ignore[import]
 | 
			
		||||
 | 
			
		||||
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
			
		||||
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | 
			
		||||
import gguf
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def count_model_parts(dir_model: Path) -> int:
 | 
			
		||||
    num_parts = 0
 | 
			
		||||
    for filename in os.listdir(dir_model):
 | 
			
		||||
        if filename.startswith("pytorch_model-"):
 | 
			
		||||
            num_parts += 1
 | 
			
		||||
 | 
			
		||||
    if num_parts > 0:
 | 
			
		||||
        print("gguf: found " + str(num_parts) + " model parts")
 | 
			
		||||
    return num_parts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args() -> argparse.Namespace:
 | 
			
		||||
    parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--vocab-only", action="store_true",
 | 
			
		||||
        help="extract only the vocab",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--outfile", type=Path,
 | 
			
		||||
        help="path to write to; default: based on input",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "model", type=Path,
 | 
			
		||||
        help="directory containing model file, or model file itself (*.bin)",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "ftype", type=int, choices=[0, 1], default=1, nargs='?',
 | 
			
		||||
        help="output format - use 0 for float32, 1 for float16",
 | 
			
		||||
    )
 | 
			
		||||
    return parser.parse_args()
 | 
			
		||||
 | 
			
		||||
args = parse_args()
 | 
			
		||||
 | 
			
		||||
dir_model = args.model
 | 
			
		||||
ftype = args.ftype
 | 
			
		||||
if not dir_model.is_dir():
 | 
			
		||||
    print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | 
			
		||||
    sys.exit(1)
 | 
			
		||||
 | 
			
		||||
# possible tensor data types
 | 
			
		||||
#   ftype == 0 -> float32
 | 
			
		||||
#   ftype == 1 -> float16
 | 
			
		||||
 | 
			
		||||
# map from ftype to string
 | 
			
		||||
ftype_str = ["f32", "f16"]
 | 
			
		||||
 | 
			
		||||
if args.outfile is not None:
 | 
			
		||||
    fname_out = args.outfile
 | 
			
		||||
else:
 | 
			
		||||
    # output in the same directory as the model by default
 | 
			
		||||
    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | 
			
		||||
 | 
			
		||||
print("gguf: loading model "+dir_model.name)
 | 
			
		||||
 | 
			
		||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
			
		||||
    hparams = json.load(f)
 | 
			
		||||
 | 
			
		||||
if hparams["architectures"][0] != "MPTForCausalLM":
 | 
			
		||||
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
			
		||||
 | 
			
		||||
    sys.exit()
 | 
			
		||||
 | 
			
		||||
# get number of model parts
 | 
			
		||||
num_parts = count_model_parts(dir_model)
 | 
			
		||||
 | 
			
		||||
ARCH=gguf.MODEL_ARCH.MPT
 | 
			
		||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
			
		||||
 | 
			
		||||
print("gguf: get model metadata")
 | 
			
		||||
 | 
			
		||||
block_count = hparams["n_layers"]
 | 
			
		||||
 | 
			
		||||
gguf_writer.add_name(dir_model.name)
 | 
			
		||||
gguf_writer.add_context_length(hparams["max_seq_len"])
 | 
			
		||||
gguf_writer.add_embedding_length(hparams["d_model"])
 | 
			
		||||
gguf_writer.add_block_count(block_count)
 | 
			
		||||
gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
 | 
			
		||||
gguf_writer.add_head_count(hparams["n_heads"])
 | 
			
		||||
gguf_writer.add_layer_norm_eps(1e-05)
 | 
			
		||||
if hparams["attn_config"]["clip_qkv"] is not None:
 | 
			
		||||
    gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
 | 
			
		||||
gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"])
 | 
			
		||||
 | 
			
		||||
# TOKENIZATION
 | 
			
		||||
 | 
			
		||||
print("gguf: get tokenizer metadata")
 | 
			
		||||
 | 
			
		||||
tokens: list[bytearray] = []
 | 
			
		||||
scores: list[float] = []
 | 
			
		||||
toktypes: list[int] = []
 | 
			
		||||
 | 
			
		||||
# gpt2 tokenizer
 | 
			
		||||
gguf_writer.add_tokenizer_model("gpt2")
 | 
			
		||||
 | 
			
		||||
print("gguf: get gpt2 tokenizer vocab")
 | 
			
		||||
 | 
			
		||||
# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but
 | 
			
		||||
# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to
 | 
			
		||||
# accomodate some "reserved" tokens; this is causing problems down the line in
 | 
			
		||||
# llama.cpp, so we pad the vocab with dummy tokens:
 | 
			
		||||
 | 
			
		||||
vocab_size = hparams["vocab_size"]
 | 
			
		||||
 | 
			
		||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
 | 
			
		||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | 
			
		||||
 | 
			
		||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | 
			
		||||
 | 
			
		||||
for i in range(vocab_size):
 | 
			
		||||
    tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
 | 
			
		||||
    scores.append(0.0) # dummy
 | 
			
		||||
    toktypes.append(gguf.TokenType.NORMAL)
 | 
			
		||||
 | 
			
		||||
gguf_writer.add_token_list(tokens)
 | 
			
		||||
gguf_writer.add_token_scores(scores)
 | 
			
		||||
gguf_writer.add_token_types(toktypes)
 | 
			
		||||
 | 
			
		||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
 | 
			
		||||
special_vocab.add_to_gguf(gguf_writer)
 | 
			
		||||
 | 
			
		||||
# TENSORS
 | 
			
		||||
 | 
			
		||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | 
			
		||||
 | 
			
		||||
# tensor info
 | 
			
		||||
print("gguf: get tensor metadata")
 | 
			
		||||
 | 
			
		||||
if num_parts == 0:
 | 
			
		||||
    part_names = iter(("pytorch_model.bin",))
 | 
			
		||||
else:
 | 
			
		||||
    part_names = (
 | 
			
		||||
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
for part_name in part_names:
 | 
			
		||||
    if args.vocab_only:
 | 
			
		||||
        break
 | 
			
		||||
    print("gguf: loading model part '" + part_name + "'")
 | 
			
		||||
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
			
		||||
 | 
			
		||||
    for name in model_part.keys():
 | 
			
		||||
        data = model_part[name]
 | 
			
		||||
 | 
			
		||||
        old_dtype = data.dtype
 | 
			
		||||
 | 
			
		||||
        # convert any unsupported data types to float32
 | 
			
		||||
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
			
		||||
            data = data.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
        data = data.squeeze().numpy()
 | 
			
		||||
 | 
			
		||||
        # map tensor names
 | 
			
		||||
        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
			
		||||
        if new_name is None:
 | 
			
		||||
            print("Cannot map tensor '" + name + "'")
 | 
			
		||||
            continue # for the sake of compatibility with some old published models, don't quit
 | 
			
		||||
            sys.exit()
 | 
			
		||||
 | 
			
		||||
        n_dims = len(data.shape)
 | 
			
		||||
        data_dtype = data.dtype
 | 
			
		||||
 | 
			
		||||
        # if f32 desired, convert any float16 to float32
 | 
			
		||||
        if ftype == 0 and data_dtype == np.float16:
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
			
		||||
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
			
		||||
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
			
		||||
            data = data.astype(np.float16)
 | 
			
		||||
 | 
			
		||||
        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
			
		||||
 | 
			
		||||
        gguf_writer.add_tensor(new_name, data)
 | 
			
		||||
 | 
			
		||||
        # note: MPT output is tied to (same as) wte in original model;
 | 
			
		||||
        # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
 | 
			
		||||
        if new_name == "token_embd.weight":
 | 
			
		||||
            gguf_writer.add_tensor("output.weight", data)
 | 
			
		||||
 | 
			
		||||
print("gguf: write header")
 | 
			
		||||
gguf_writer.write_header_to_file()
 | 
			
		||||
print("gguf: write metadata")
 | 
			
		||||
gguf_writer.write_kv_data_to_file()
 | 
			
		||||
if not args.vocab_only:
 | 
			
		||||
    print("gguf: write tensors")
 | 
			
		||||
    gguf_writer.write_tensors_to_file()
 | 
			
		||||
 | 
			
		||||
gguf_writer.close()
 | 
			
		||||
 | 
			
		||||
print(f"gguf: model successfully exported to '{fname_out}'")
 | 
			
		||||
print("")
 | 
			
		||||
		Reference in New Issue
	
	Block a user