mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : add qwen2moe (#6074)
* support qwen2moe * fix-review * metal : support unary ops for nelements % 4 != 0 * metal : require contiguousness for float4 unary kernels * metal : require contiguousness for float4 unary kernels (cont) * fix-review * names : for brevity "SHARED_EXP" -> "SHEXP" * llama : reuse build_moe_ffn() * llama : add model type name --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		
							
								
								
									
										252
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										252
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -105,7 +105,7 @@ | ||||
| #endif | ||||
|  | ||||
| #define LLAMA_MAX_NODES   8192 | ||||
| #define LLAMA_MAX_EXPERTS 16 | ||||
| #define LLAMA_MAX_EXPERTS 60 | ||||
|  | ||||
|  | ||||
| // | ||||
| @@ -209,6 +209,7 @@ enum llm_arch { | ||||
|     LLM_ARCH_STABLELM, | ||||
|     LLM_ARCH_QWEN, | ||||
|     LLM_ARCH_QWEN2, | ||||
|     LLM_ARCH_QWEN2MOE, | ||||
|     LLM_ARCH_PHI2, | ||||
|     LLM_ARCH_PLAMO, | ||||
|     LLM_ARCH_CODESHELL, | ||||
| @@ -242,6 +243,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { | ||||
|     { LLM_ARCH_STABLELM,        "stablelm"   }, | ||||
|     { LLM_ARCH_QWEN,            "qwen"       }, | ||||
|     { LLM_ARCH_QWEN2,           "qwen2"      }, | ||||
|     { LLM_ARCH_QWEN2MOE,        "qwen2moe"   }, | ||||
|     { LLM_ARCH_PHI2,            "phi2"       }, | ||||
|     { LLM_ARCH_PLAMO,           "plamo"      }, | ||||
|     { LLM_ARCH_CODESHELL,       "codeshell"  }, | ||||
| @@ -437,6 +439,7 @@ enum llm_tensor { | ||||
|     LLM_TENSOR_ATTN_OUT_NORM, | ||||
|     LLM_TENSOR_ATTN_ROT_EMBD, | ||||
|     LLM_TENSOR_FFN_GATE_INP, | ||||
|     LLM_TENSOR_FFN_GATE_INP_SHEXP, | ||||
|     LLM_TENSOR_FFN_NORM, | ||||
|     LLM_TENSOR_FFN_GATE, | ||||
|     LLM_TENSOR_FFN_DOWN, | ||||
| @@ -448,6 +451,9 @@ enum llm_tensor { | ||||
|     LLM_TENSOR_FFN_DOWN_EXPS, // merged experts | ||||
|     LLM_TENSOR_FFN_GATE_EXPS, | ||||
|     LLM_TENSOR_FFN_UP_EXPS, | ||||
|     LLM_TENSOR_FFN_DOWN_SHEXP, | ||||
|     LLM_TENSOR_FFN_GATE_SHEXP, | ||||
|     LLM_TENSOR_FFN_UP_SHEXP, | ||||
|     LLM_TENSOR_ATTN_Q_NORM, | ||||
|     LLM_TENSOR_ATTN_K_NORM, | ||||
|     LLM_TENSOR_LAYER_OUT_NORM, | ||||
| @@ -745,6 +751,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_QWEN2MOE, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,         "token_embd" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,        "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,             "output" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" }, | ||||
|             { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" }, | ||||
|             { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" }, | ||||
|             { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" }, | ||||
|             { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" }, | ||||
|             { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" }, | ||||
|             { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, | ||||
|             { LLM_TENSOR_FFN_GATE_SHEXP,     "blk.%d.ffn_gate_shexp" }, | ||||
|             { LLM_TENSOR_FFN_DOWN_SHEXP,     "blk.%d.ffn_down_shexp" }, | ||||
|             { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_PHI2, | ||||
|         { | ||||
| @@ -1731,6 +1759,7 @@ enum e_model { | ||||
|     MODEL_MEDIUM, | ||||
|     MODEL_LARGE, | ||||
|     MODEL_XL, | ||||
|     MODEL_A2_7B, | ||||
|     MODEL_8x7B, | ||||
|     MODEL_8x22B, | ||||
|     MODEL_16x12B, | ||||
| @@ -1917,6 +1946,12 @@ struct llama_layer { | ||||
|     struct ggml_tensor * ffn_down_exps; | ||||
|     struct ggml_tensor * ffn_up_exps ; | ||||
|  | ||||
|     // ff shared expert (shexp) | ||||
|     struct ggml_tensor * ffn_gate_inp_shexp; | ||||
|     struct ggml_tensor * ffn_gate_shexp; | ||||
|     struct ggml_tensor * ffn_down_shexp; | ||||
|     struct ggml_tensor * ffn_up_shexp; | ||||
|  | ||||
|     // ff bias | ||||
|     struct ggml_tensor * ffn_down_b; // b2 | ||||
|     struct ggml_tensor * ffn_up_b;   // b3 | ||||
| @@ -3587,6 +3622,7 @@ static const char * llama_model_type_name(e_model type) { | ||||
|         case MODEL_MEDIUM: return "0.4B"; | ||||
|         case MODEL_LARGE:  return "0.8B"; | ||||
|         case MODEL_XL:     return "1.5B"; | ||||
|         case MODEL_A2_7B:  return "A2.7B"; | ||||
|         case MODEL_8x7B:   return "8x7B"; | ||||
|         case MODEL_8x22B:  return "8x22B"; | ||||
|         case MODEL_16x12B: return "16x12B"; | ||||
| @@ -3886,6 +3922,14 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_QWEN2MOE: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 24: model.type = e_model::MODEL_A2_7B; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_PHI2: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); | ||||
| @@ -5156,6 +5200,54 @@ static bool llm_load_tensors( | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_QWEN2MOE: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
|  | ||||
|                     // output | ||||
|                     { | ||||
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); | ||||
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}); | ||||
|                     } | ||||
|  | ||||
|                     for (int i = 0; i < n_layer; ++i) { | ||||
|                         ggml_context * ctx_layer = ctx_for_layer(i); | ||||
|                         ggml_context * ctx_split = ctx_for_layer_split(i); | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); | ||||
|  | ||||
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}); | ||||
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); | ||||
|  | ||||
|                         // optional bias tensors | ||||
|                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}); | ||||
|                         layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}); | ||||
|                         layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}); | ||||
|  | ||||
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); | ||||
|  | ||||
|                         layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); | ||||
|  | ||||
|                         GGML_ASSERT(hparams.n_expert      > 0); | ||||
|                         GGML_ASSERT(hparams.n_expert_used > 0); | ||||
|  | ||||
|                         // MoE branch | ||||
|                         auto n_ff_exp = n_ff / hparams.n_expert_used; | ||||
|                         layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}); | ||||
|                         layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}); | ||||
|                         layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}); | ||||
|  | ||||
|                         // Shared expert branch | ||||
|                         layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}); | ||||
|                         layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd,   n_ff}); | ||||
|                         layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {  n_ff, n_embd}); | ||||
|                         layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd,   n_ff}); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_PHI2: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
| @@ -6532,7 +6624,7 @@ struct llm_build_context { | ||||
|                         LLM_NORM_RMS, cb, il); | ||||
|                 cb(cur, "ffn_norm", il); | ||||
|  | ||||
|                 cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il); | ||||
|                 cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il); | ||||
|             } | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
| @@ -6565,7 +6657,7 @@ struct llm_build_context { | ||||
|     } | ||||
|  | ||||
|     // REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505 | ||||
|     ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, int il) { | ||||
|     ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, bool norm_w, int il) { | ||||
|         ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts] | ||||
|         cb(logits, "ffn_moe_logits", il); | ||||
|  | ||||
| @@ -6582,11 +6674,13 @@ struct llm_build_context { | ||||
|  | ||||
|         weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok] | ||||
|  | ||||
|         ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); | ||||
|         cb(weights_sum, "ffn_moe_weights_sum", il); | ||||
|         if (norm_w) { | ||||
|             ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); | ||||
|             cb(weights_sum, "ffn_moe_weights_sum", il); | ||||
|  | ||||
|         weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok] | ||||
|         cb(weights, "ffn_moe_weights_norm", il); | ||||
|             weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok] | ||||
|             cb(weights, "ffn_moe_weights_norm", il); | ||||
|         } | ||||
|  | ||||
|         // compute expert outputs | ||||
|         ggml_tensor * moe_out = nullptr; | ||||
| @@ -7083,7 +7177,7 @@ struct llm_build_context { | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "ffn_norm", il); | ||||
|  | ||||
|             cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, il); | ||||
|             cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, true, il); | ||||
|  | ||||
|             // Grok | ||||
|             // if layer_out_norm is present then apply it before adding the input | ||||
| @@ -7219,7 +7313,7 @@ struct llm_build_context { | ||||
|                                  LLM_NORM, cb, il); | ||||
|             cb(cur, "attn_out_norm", il); | ||||
|  | ||||
|             cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il); | ||||
|             cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il); | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "ffn_out", il); | ||||
| @@ -8434,6 +8528,141 @@ struct llm_build_context { | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_qwen2moe() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         // mutable variable, needed during the last layer of the computation to skip unused tokens | ||||
|         int32_t n_tokens = this->n_tokens; | ||||
|  | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = build_inp_pos(); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             // norm | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self_attention | ||||
|             { | ||||
|                 // compute Q and K and RoPE them | ||||
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|                 Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|  | ||||
|                 Qcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, | ||||
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 Kcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, | ||||
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, | ||||
|                         model.layers[il].wo, model.layers[il].bo, | ||||
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|             } | ||||
|  | ||||
|             if (il == n_layer - 1) { | ||||
|                 // skip computing output for unused tokens | ||||
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids(); | ||||
|                 n_tokens = n_outputs; | ||||
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids); | ||||
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // MoE branch | ||||
|             cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                     model.layers[il].ffn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "ffn_norm", il); | ||||
|  | ||||
|             ggml_tensor * moe_out = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, false, il); | ||||
|  | ||||
|             // FFN shared expert | ||||
|             { | ||||
|                 ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur); | ||||
|                 cb(cur_gate_inp, "ffn_shexp_gate_inp", il); | ||||
|  | ||||
|                 // sigmoid | ||||
|                 ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp); | ||||
|                 cb(cur_gate, "ffn_shexp_gate", il); | ||||
|  | ||||
|                 ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur, | ||||
|                         model.layers[il].ffn_up_shexp,   NULL, | ||||
|                         model.layers[il].ffn_gate_shexp, NULL, | ||||
|                         model.layers[il].ffn_down_shexp, NULL, | ||||
|                         NULL, | ||||
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il); | ||||
|                 cb(cur_ffn, "ffn_shexp", il); | ||||
|  | ||||
|                 ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate); | ||||
|                 cb(ffn_shexp_out, "ffn_shexp_out", il); | ||||
|  | ||||
|                 moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out); | ||||
|                 cb(moe_out, "ffn_out", il); | ||||
|  | ||||
|                 cur = moe_out; | ||||
|             } | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, cur, hparams, | ||||
|                 model.output_norm, NULL, | ||||
|                 LLM_NORM_RMS, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         // lm_head | ||||
|         cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_phi2() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
| @@ -9917,6 +10146,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm.build_qwen2(); | ||||
|             } break; | ||||
|         case LLM_ARCH_QWEN2MOE: | ||||
|             { | ||||
|                 result = llm.build_qwen2moe(); | ||||
|             } break; | ||||
|         case LLM_ARCH_PHI2: | ||||
|             { | ||||
|                 result = llm.build_phi2(); | ||||
| @@ -14834,6 +15067,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { | ||||
|         case LLM_ARCH_STABLELM: | ||||
|         case LLM_ARCH_QWEN: | ||||
|         case LLM_ARCH_QWEN2: | ||||
|         case LLM_ARCH_QWEN2MOE: | ||||
|         case LLM_ARCH_PHI2: | ||||
|         case LLM_ARCH_GEMMA: | ||||
|         case LLM_ARCH_STARCODER2: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Shijie
					Shijie