ggml-cpu : split arch-specific implementations (#13892)

* move ggml-cpu-aarch64 to repack

* split quantize_row_q8_0/1

* split helper functions

* split ggml_vec_dot_q4_0_q8_0

* split ggml_vec_dot_q4_1_q8_1

* split ggml_vec_dot_q5_0_q8_0

* split ggml_vec_dot_q5_1_q8_1

* split ggml_vec_dot_q8_0_q8_0

* split ggml_vec_dot_tq1_0_q8_K

* split ggml_vec_dot_tq2_0_q8_K

* split ggml_vec_dot_q2_K_q8_K

* split ggml_vec_dot_q3_K_q8_K

* split ggml_vec_dot_q4_K_q8_K

* split ggml_vec_dot_q5_K_q8_K

* split ggml_vec_dot_q6_K_q8_K

* split ggml_vec_dot_iq2_xxs_q8_K

* split ggml_vec_dot_iq2_xs_q8_K

* split ggml_vec_dot_iq2_s_q8_K

* split ggml_vec_dot_iq3_xxs_q8_K

* split ggml_vec_dot_iq3_s_q8_K

* split ggml_vec_dot_iq1_s_q8_K

* split ggml_vec_dot_iq1_m_q8_K

* split ggml_vec_dot_iq4_nl_q8_0

* split ggml_vec_dot_iq4_xs_q8_K

* fix typos

* fix missing prototypes

* rename ggml-cpu-quants.c

* rename ggml-cpu-traits

* rename arm folder

* move cpu-feats-x86.cpp

* rename ggml-cpu-hbm

* update arm detection macro in quants.c

* move iq quant tables

* split ggml_quantize_mat_q8_0/K

* split ggml_gemv_*

* split ggml_gemm_*

* rename namespace aarch64 to repack

* use weak aliases to replace test macros

* rename GGML_CPU_AARCH64 to GGML_CPU_REPACK

* rename more aarch64 to repack

* clean up rebase leftover

* fix compilation errors

* remove trailing spaces

* try to fix clang compilation errors

* try to fix clang compilation errors again

* try to fix clang compilation errors, 3rd attempt

* try to fix clang compilation errors, 4th attempt

* try to fix clang compilation errors, 5th attempt

* try to fix clang compilation errors, 6th attempt

* try to fix clang compilation errors, 7th attempt

* try to fix clang compilation errors, 8th attempt

* try to fix clang compilation errors, 9th attempt

* more cleanup

* fix compilation errors

* fix apple targets

* fix a typo in arm version of ggml_vec_dot_q4_K_q8_K

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
xctan
2025-06-09 22:47:13 +08:00
committed by GitHub
parent 8f47e25f56
commit f470bc36be
36 changed files with 24288 additions and 17167 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,396 @@
#define GGML_COMMON_IMPL_CPP
#define GGML_COMMON_DECL_CPP
#include "ggml-common.h"
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-impl.h"
#include "traits.h"
#include <cmath>
#include <cstring>
#include <cassert>
#include <cstdlib> // for qsort
#include <cstdio> // for GGML_ASSERT
#define GGML_CPU_CLANG_WORKAROUND
#include "../../repack.h"
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Woverlength-strings"
#endif
#define UNUSED GGML_UNUSED
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
vfloat32m1_t sumf = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
for (int l = 0; l < nb; l++) {
const int64_t a0 = *(const int64_t *)&a_ptr[l].qs[0];
const int64_t a1 = *(const int64_t *)&a_ptr[l].qs[8];
const int64_t a2 = *(const int64_t *)&a_ptr[l].qs[16];
const int64_t a3 = *(const int64_t *)&a_ptr[l].qs[24];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment constraints
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a0, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a1, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a2, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a3, vl / 4));
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_hi_m));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
// vector version needs Zvfhmin extension
const float a_scale = GGML_FP16_TO_FP32(a_ptr[l].d);
const float b_scales[8] = {
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
GGML_FP16_TO_FP32(b_ptr[l].d[7])
};
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scale, vl / 4);
sumf = __riscv_vfmacc_vv_f32m1(sumf, tmp1, b_scales_vec, vl / 4);
}
__riscv_vse32_v_f32m1(s + x * ncols_interleaved, sumf, vl / 4);
}
return;
}
#endif
{
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
}
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
vfloat32m1_t sumf0 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf1 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf2 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf3 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
for (int l = 0; l < nb; l++) {
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
// vector version needs Zvfhmin extension
const float a_scales[4] = {
GGML_FP16_TO_FP32(a_ptr[l].d[0]),
GGML_FP16_TO_FP32(a_ptr[l].d[1]),
GGML_FP16_TO_FP32(a_ptr[l].d[2]),
GGML_FP16_TO_FP32(a_ptr[l].d[3])
};
const float b_scales[8] = {
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
GGML_FP16_TO_FP32(b_ptr[l].d[7])
};
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
const int64_t A0 = *(const int64_t *)&a_ptr[l].qs[0];
const int64_t A4 = *(const int64_t *)&a_ptr[l].qs[32];
const int64_t A8 = *(const int64_t *)&a_ptr[l].qs[64];
const int64_t Ac = *(const int64_t *)&a_ptr[l].qs[96];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l0;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A0, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A4, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A8, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ac, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l0 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l0));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[0], vl / 4);
sumf0 = __riscv_vfmacc_vv_f32m1(sumf0, tmp1, b_scales_vec, vl / 4);
}
const int64_t A1 = *(const int64_t *)&a_ptr[l].qs[8];
const int64_t A5 = *(const int64_t *)&a_ptr[l].qs[40];
const int64_t A9 = *(const int64_t *)&a_ptr[l].qs[72];
const int64_t Ad = *(const int64_t *)&a_ptr[l].qs[104];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l1;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A1, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A5, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A9, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ad, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l1 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l1));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[1], vl / 4);
sumf1 = __riscv_vfmacc_vv_f32m1(sumf1, tmp1, b_scales_vec, vl / 4);
}
const int64_t A2 = *(const int64_t *)&a_ptr[l].qs[16];
const int64_t A6 = *(const int64_t *)&a_ptr[l].qs[48];
const int64_t Aa = *(const int64_t *)&a_ptr[l].qs[80];
const int64_t Ae = *(const int64_t *)&a_ptr[l].qs[112];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l2;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A2, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A6, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Aa, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ae, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l2 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l2));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[2], vl / 4);
sumf2 = __riscv_vfmacc_vv_f32m1(sumf2, tmp1, b_scales_vec, vl / 4);
}
const int64_t A3 = *(const int64_t *)&a_ptr[l].qs[24];
const int64_t A7 = *(const int64_t *)&a_ptr[l].qs[56];
const int64_t Ab = *(const int64_t *)&a_ptr[l].qs[88];
const int64_t Af = *(const int64_t *)&a_ptr[l].qs[120];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l3;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A3, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A7, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ab, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Af, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l3 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l3));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[3], vl / 4);
sumf3 = __riscv_vfmacc_vv_f32m1(sumf3, tmp1, b_scales_vec, vl / 4);
}
}
__riscv_vse32_v_f32m1(&s[(y * 4 + 0) * bs + x * ncols_interleaved], sumf0, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 1) * bs + x * ncols_interleaved], sumf1, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 2) * bs + x * ncols_interleaved], sumf2, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 3) * bs + x * ncols_interleaved], sumf3, vl / 4);
}
}
return;
}
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
float sumf[4][8];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,327 @@
#include "ggml-backend-impl.h"
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstring>
#include <vector>
#include <bitset>
#include <array>
#include <string>
// ref: https://cdrdv2-public.intel.com/782156/325383-sdm-vol-2abcd.pdf
struct cpuid_x86 {
bool SSE3(void) { return f_1_ecx[0]; }
bool PCLMULQDQ(void) { return f_1_ecx[1]; }
bool MONITOR(void) { return f_1_ecx[3]; }
bool SSSE3(void) { return f_1_ecx[9]; }
bool FMA(void) { return f_1_ecx[12]; }
bool CMPXCHG16B(void) { return f_1_ecx[13]; }
bool SSE41(void) { return f_1_ecx[19]; }
bool SSE42(void) { return f_1_ecx[20]; }
bool MOVBE(void) { return f_1_ecx[22]; }
bool POPCNT(void) { return f_1_ecx[23]; }
bool AES(void) { return f_1_ecx[25]; }
bool XSAVE(void) { return f_1_ecx[26]; }
bool OSXSAVE(void) { return f_1_ecx[27]; }
bool AVX(void) { return f_1_ecx[28]; }
bool F16C(void) { return f_1_ecx[29]; }
bool RDRAND(void) { return f_1_ecx[30]; }
bool MSR(void) { return f_1_edx[5]; }
bool CX8(void) { return f_1_edx[8]; }
bool SEP(void) { return f_1_edx[11]; }
bool CMOV(void) { return f_1_edx[15]; }
bool CLFSH(void) { return f_1_edx[19]; }
bool MMX(void) { return f_1_edx[23]; }
bool FXSR(void) { return f_1_edx[24]; }
bool SSE(void) { return f_1_edx[25]; }
bool SSE2(void) { return f_1_edx[26]; }
bool FSGSBASE(void) { return f_7_ebx[0]; }
bool BMI1(void) { return f_7_ebx[3]; }
bool HLE(void) { return is_intel && f_7_ebx[4]; }
bool AVX2(void) { return f_7_ebx[5]; }
bool BMI2(void) { return f_7_ebx[8]; }
bool ERMS(void) { return f_7_ebx[9]; }
bool INVPCID(void) { return f_7_ebx[10]; }
bool RTM(void) { return is_intel && f_7_ebx[11]; }
bool AVX512F(void) { return f_7_ebx[16]; }
bool AVX512DQ(void) { return f_7_ebx[17]; }
bool RDSEED(void) { return f_7_ebx[18]; }
bool ADX(void) { return f_7_ebx[19]; }
bool AVX512PF(void) { return f_7_ebx[26]; }
bool AVX512ER(void) { return f_7_ebx[27]; }
bool AVX512CD(void) { return f_7_ebx[28]; }
bool AVX512BW(void) { return f_7_ebx[30]; }
bool AVX512VL(void) { return f_7_ebx[31]; }
bool SHA(void) { return f_7_ebx[29]; }
bool PREFETCHWT1(void) { return f_7_ecx[0]; }
bool LAHF(void) { return f_81_ecx[0]; }
bool LZCNT(void) { return is_intel && f_81_ecx[5]; }
bool ABM(void) { return is_amd && f_81_ecx[5]; }
bool SSE4a(void) { return is_amd && f_81_ecx[6]; }
bool XOP(void) { return is_amd && f_81_ecx[11]; }
bool TBM(void) { return is_amd && f_81_ecx[21]; }
bool SYSCALL(void) { return is_intel && f_81_edx[11]; }
bool MMXEXT(void) { return is_amd && f_81_edx[22]; }
bool RDTSCP(void) { return is_intel && f_81_edx[27]; }
bool _3DNOWEXT(void) { return is_amd && f_81_edx[30]; }
bool _3DNOW(void) { return is_amd && f_81_edx[31]; }
bool AVX512_VBMI(void) { return f_7_ecx[1]; }
bool AVX512_VNNI(void) { return f_7_ecx[11]; }
bool AVX512_FP16(void) { return f_7_edx[23]; }
bool AVX512_BF16(void) { return f_7_1_eax[5]; }
bool AVX_VNNI(void) { return f_7_1_eax[4]; }
bool AMX_TILE(void) { return f_7_edx[24]; }
bool AMX_INT8(void) { return f_7_edx[25]; }
bool AMX_FP16(void) { return f_7_1_eax[21]; }
bool AMX_BF16(void) { return f_7_edx[22]; }
#ifdef _MSC_VER
static void cpuid(int cpu_info[4], int eax) {
__cpuid(cpu_info, eax);
}
static void cpuidex(int cpu_info[4], int eax, int ecx) {
__cpuidex(cpu_info, eax, ecx);
}
#else
static void cpuid(int cpu_info[4], int eax) {
__asm__ __volatile__(
"cpuid"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(eax), "c"(0));
}
static void cpuidex(int cpu_info[4], int eax, int ecx) {
__asm__ __volatile__(
"cpuid"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(eax), "c"(ecx));
}
#endif
cpuid_x86() {
std::array<int, 4> cpui;
std::vector<std::array<int, 4>> data;
// calling __cpuid with 0x0 as the function_id argument
// gets the number of the highest valid function ID.
cpuid(cpui.data(), 0);
int n_ids = cpui[0];
for (int i = 0; i <= n_ids; ++i) {
cpuidex(cpui.data(), i, 0);
data.push_back(cpui);
}
// capture vendor string
char vendor[0x20] = {};
*reinterpret_cast<int *>(vendor) = data[0][1];
*reinterpret_cast<int *>(vendor + 4) = data[0][3];
*reinterpret_cast<int *>(vendor + 8) = data[0][2];
this->vendor = vendor;
if (this->vendor == "GenuineIntel") {
is_intel = true;
} else if (this->vendor == "AuthenticAMD") {
is_amd = true;
}
// load bitset with flags for function 0x00000001
if (n_ids >= 1) {
f_1_ecx = data[1][2];
f_1_edx = data[1][3];
}
// load bitset with flags for function 0x00000007
if (n_ids >= 7) {
f_7_ebx = data[7][1];
f_7_ecx = data[7][2];
f_7_edx = data[7][3];
cpuidex(cpui.data(), 7, 1);
f_7_1_eax = cpui[0];
}
// calling __cpuid with 0x80000000 as the function_id argument
// gets the number of the highest valid extended ID.
cpuid(cpui.data(), 0x80000000);
unsigned int n_ex_ids = cpui[0];
std::vector<std::array<int, 4>> ext_data;
for (unsigned int i = 0x80000000; i <= n_ex_ids; ++i) {
cpuidex(cpui.data(), i, 0);
ext_data.push_back(cpui);
}
// load bitset with flags for function 0x80000001
if (n_ex_ids >= 0x80000001) {
f_81_ecx = ext_data[1][2];
f_81_edx = ext_data[1][3];
}
// interpret CPU brand string if reported
char brand[0x40] = {};
if (n_ex_ids >= 0x80000004) {
std::memcpy(brand, ext_data[2].data(), sizeof(cpui));
std::memcpy(brand + 16, ext_data[3].data(), sizeof(cpui));
std::memcpy(brand + 32, ext_data[4].data(), sizeof(cpui));
this->brand = brand;
}
}
bool is_intel = false;
bool is_amd = false;
std::string vendor;
std::string brand;
std::bitset<32> f_1_ecx;
std::bitset<32> f_1_edx;
std::bitset<32> f_7_ebx;
std::bitset<32> f_7_ecx;
std::bitset<32> f_7_edx;
std::bitset<32> f_7_1_eax;
std::bitset<32> f_81_ecx;
std::bitset<32> f_81_edx;
};
#if 0
void test_x86_is() {
cpuid_x86 is;
printf("CPU Vendor: %s\n", is.vendor.c_str());
printf("Brand: %s\n", is.brand.c_str());
printf("is_intel: %d\n", is.is_intel);
printf("is_amd: %d\n", is.is_amd);
printf("sse3: %d\n", is.SSE3());
printf("pclmulqdq: %d\n", is.PCLMULQDQ());
printf("ssse3: %d\n", is.SSSE3());
printf("fma: %d\n", is.FMA());
printf("cmpxchg16b: %d\n", is.CMPXCHG16B());
printf("sse41: %d\n", is.SSE41());
printf("sse42: %d\n", is.SSE42());
printf("movbe: %d\n", is.MOVBE());
printf("popcnt: %d\n", is.POPCNT());
printf("aes: %d\n", is.AES());
printf("xsave: %d\n", is.XSAVE());
printf("osxsave: %d\n", is.OSXSAVE());
printf("avx: %d\n", is.AVX());
printf("f16c: %d\n", is.F16C());
printf("rdrand: %d\n", is.RDRAND());
printf("msr: %d\n", is.MSR());
printf("cx8: %d\n", is.CX8());
printf("sep: %d\n", is.SEP());
printf("cmov: %d\n", is.CMOV());
printf("clflush: %d\n", is.CLFSH());
printf("mmx: %d\n", is.MMX());
printf("fxsr: %d\n", is.FXSR());
printf("sse: %d\n", is.SSE());
printf("sse2: %d\n", is.SSE2());
printf("fsgsbase: %d\n", is.FSGSBASE());
printf("bmi1: %d\n", is.BMI1());
printf("hle: %d\n", is.HLE());
printf("avx2: %d\n", is.AVX2());
printf("bmi2: %d\n", is.BMI2());
printf("erms: %d\n", is.ERMS());
printf("invpcid: %d\n", is.INVPCID());
printf("rtm: %d\n", is.RTM());
printf("avx512f: %d\n", is.AVX512F());
printf("rdseed: %d\n", is.RDSEED());
printf("adx: %d\n", is.ADX());
printf("avx512pf: %d\n", is.AVX512PF());
printf("avx512er: %d\n", is.AVX512ER());
printf("avx512cd: %d\n", is.AVX512CD());
printf("sha: %d\n", is.SHA());
printf("prefetchwt1: %d\n", is.PREFETCHWT1());
printf("lahf: %d\n", is.LAHF());
printf("lzcnt: %d\n", is.LZCNT());
printf("abm: %d\n", is.ABM());
printf("sse4a: %d\n", is.SSE4a());
printf("xop: %d\n", is.XOP());
printf("tbm: %d\n", is.TBM());
printf("syscall: %d\n", is.SYSCALL());
printf("mmxext: %d\n", is.MMXEXT());
printf("rdtscp: %d\n", is.RDTSCP());
printf("3dnowext: %d\n", is._3DNOWEXT());
printf("3dnow: %d\n", is._3DNOW());
printf("avx512_vbmi: %d\n", is.AVX512_VBMI());
printf("avx512_vnni: %d\n", is.AVX512_VNNI());
printf("avx512_fp16: %d\n", is.AVX512_FP16());
printf("avx512_bf16: %d\n", is.AVX512_BF16());
printf("amx_tile: %d\n", is.AMX_TILE());
printf("amx_int8: %d\n", is.AMX_INT8());
printf("amx_fp16: %d\n", is.AMX_FP16());
printf("amx_bf16: %d\n", is.AMX_BF16());
}
#endif
static int ggml_backend_cpu_x86_score() {
// FIXME: this does not check for OS support
int score = 1;
cpuid_x86 is;
#ifdef GGML_FMA
if (!is.FMA()) { return 0; }
score += 1;
#endif
#ifdef GGML_F16C
if (!is.F16C()) { return 0; }
score += 1<<1;
#endif
#ifdef GGML_SSE42
if (!is.SSE42()) { return 0; }
score += 1<<2;
#endif
#ifdef GGML_BMI2
if (!is.BMI2()) { return 0; }
score += 1<<3;
#endif
#ifdef GGML_AVX
if (!is.AVX()) { return 0; }
score += 1<<4;
#endif
#ifdef GGML_AVX2
if (!is.AVX2()) { return 0; }
score += 1<<5;
#endif
#ifdef GGML_AVX_VNNI
if (!is.AVX_VNNI()) { return 0; }
score += 1<<6;
#endif
#ifdef GGML_AVX512
if (!is.AVX512F()) { return 0; }
if (!is.AVX512CD()) { return 0; }
if (!is.AVX512VL()) { return 0; }
if (!is.AVX512DQ()) { return 0; }
if (!is.AVX512BW()) { return 0; }
score += 1<<7;
#endif
#ifdef GGML_AVX512_VBMI
if (!is.AVX512_VBMI()) { return 0; }
score += 1<<8;
#endif
#ifdef GGML_AVX512_BF16
if (!is.AVX512_BF16()) { return 0; }
score += 1<<9;
#endif
#ifdef GGML_AVX512_VNNI
if (!is.AVX512_VNNI()) { return 0; }
score += 1<<10;
#endif
#ifdef GGML_AMX_INT8
if (!is.AMX_INT8()) { return 0; }
score += 1<<11;
#endif
return score;
}
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_x86_score)
#endif // defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff