mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-03 09:22:01 +00:00
gguf : single pass for writing tensors + refactoring writer
This commit is contained in:
@@ -18,11 +18,15 @@ NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
|
||||
# reverse HF permute back to original pth layout
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
||||
|
||||
|
||||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
|
||||
if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
@@ -34,6 +38,7 @@ def count_model_parts(dir_model: str) -> int:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||
print(" ftype == 0 -> float32")
|
||||
@@ -74,12 +79,11 @@ if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, architecture="llama")
|
||||
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
llm_arch = "llama"
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
|
||||
@@ -91,7 +95,7 @@ else:
|
||||
if "_name_or_path" in hparams:
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo=""
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
@@ -102,19 +106,19 @@ else:
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_architecture(llm_arch)
|
||||
gguf_writer.add_architecture()
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_file_type("All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth")
|
||||
gguf_writer.add_context_length(llm_arch, ctx_length)
|
||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(llm_arch, block_count)
|
||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(llm_arch, head_count)
|
||||
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
|
||||
# TOKENIZATION
|
||||
@@ -136,19 +140,23 @@ if Path(dir_model + "/tokenizer.model").is_file():
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i): toktype = 2
|
||||
if tokenizer.is_control(i): toktype = 3
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# TODO: How to determinate if a token is user defined?
|
||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
||||
# if tokenizer.is_user_defined(i): toktype = 4
|
||||
|
||||
if tokenizer.is_unused(i): toktype = 5
|
||||
if tokenizer.is_byte(i): toktype = 6
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
@@ -212,7 +220,7 @@ else:
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '"+ part_name + "'")
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
@@ -238,11 +246,12 @@ for part_name in part_names:
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print( "Can not map tensor '" + name + "'" )
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
old_dtype = data_dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data.dtype == np.float16:
|
||||
@@ -256,17 +265,19 @@ for part_name in part_names:
|
||||
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data_dtype = np.float16
|
||||
|
||||
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
|
||||
data = data.astype(data_dtype)
|
||||
|
||||
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
|
||||
print(name + ", n_dims = " + n_dims + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensor metadata")
|
||||
gguf_writer.write_ti_data_to_file()
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
# tensor data
|
||||
print("gguf: convert and write tensor data")
|
||||
@@ -279,7 +290,7 @@ else:
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '"+ part_name + "'")
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
@@ -307,7 +318,7 @@ for part_name in part_names:
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print( "Can not map tensor '" + name + "'" )
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
@@ -325,8 +336,6 @@ for part_name in part_names:
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.write_tensor_to_file(data)
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
Reference in New Issue
Block a user