ggml : split graph allocations according to backend max buffer size (#15815)

* ggml : make gallocr respect the backend's max buffer size

* if the graph requires more memory than can fit into a single allocation, split it into multiple backend buffers
* vulkan: report the actual max  allocation size in buffer type  interface

* fix missing newline, apple-clang warning

* track size of individual chunks in ggml_dyn_tallocr and raise max chunks.
revert to use suballocation_block_size as max chunk size for vulkan.

* track (chunk, offset) pairs instead of "global" offsets through gallocr.

* simpler, don't need loops to map between local/global offsets
* touches more code

* fix dyn_tallocr_max_size and initialization

* fix memory leak when buffers are reused due to same buffer type appearing multiple times

* make vbuffer allocation follow the same logic as backend_buffer did before

* continue to use leftover unallocated space of previous chunks after a new one has been created

* treat free blocks of each chunk as separate list
* they're still allocated together, but start/end of each chunk is tracked, and allocate/free iterate over sub-ranges
* exhaust freed blocks of all chunks before considering their last blocks with unallocated space
* start with 0 chunks/blocks and create chunks as needed
* allow the last chunk to grow beyond max size

* refactor: move adding new free block and new chunk into separate functions

* allocate chunks individually with a separate free-blocks list for each one

* needs a bit more memory/allocations/indirections, but code is simpler

* fix warnings (missing static) & debug checks
This commit is contained in:
Acly
2025-09-24 16:17:49 +02:00
committed by GitHub
parent 3a59971967
commit f2a789e334
4 changed files with 858 additions and 141 deletions

View File

@@ -23,7 +23,7 @@ static bool ggml_is_view(const struct ggml_tensor * t) {
}
// ops that return true for this function must not use restrict pointers for their backend implementations
static bool ggml_op_can_inplace(enum ggml_op op) {
bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
case GGML_OP_DIAG_MASK_ZERO:
@@ -95,39 +95,104 @@ enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_te
// dynamic tensor allocator
#define GGML_VBUFFER_MAX_CHUNKS 16
// relative memory address within an allocation that can be split into multiple buffers (chunks)
struct buffer_address {
int chunk; // index of a backend buffer
size_t offset; // local memory offset within the buffer
};
static const struct buffer_address GGML_BUFFER_ADDRESS_INVALID = { -1, SIZE_MAX };
static bool ggml_buffer_address_less(struct buffer_address a, struct buffer_address b) {
return a.chunk != b.chunk ? a.chunk < b.chunk : a.offset < b.offset;
}
struct free_block {
size_t offset;
size_t size;
};
struct tallocr_chunk {
struct free_block free_blocks[MAX_FREE_BLOCKS];
int n_free_blocks;
size_t max_size;
};
struct ggml_dyn_tallocr {
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
size_t max_size;
size_t max_chunk_size;
struct tallocr_chunk * chunks[GGML_VBUFFER_MAX_CHUNKS];
int n_chunks;
#ifdef GGML_ALLOCATOR_DEBUG
struct {
const struct ggml_tensor * tensor;
size_t offset;
struct buffer_address addr;
} allocated_tensors[1024];
#endif
};
static void ggml_dyn_tallocr_insert_block(struct tallocr_chunk * chunk, size_t offset, size_t size) {
GGML_ASSERT(chunk->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < chunk->n_free_blocks && chunk->free_blocks[insert_pos].offset < offset) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = chunk->n_free_blocks; i > insert_pos; i--) {
chunk->free_blocks[i] = chunk->free_blocks[i-1];
}
// insert the new block
chunk->free_blocks[insert_pos].offset = offset;
chunk->free_blocks[insert_pos].size = size;
chunk->n_free_blocks++;
}
static void ggml_dyn_tallocr_remove_block(struct tallocr_chunk * chunk, int idx) {
// shift all elements after idx by 1 to the left, overwriting the element at idx
for (int i = idx; i < chunk->n_free_blocks; i++) {
chunk->free_blocks[i] = chunk->free_blocks[i+1];
}
chunk->n_free_blocks--;
}
static int ggml_dyn_tallocr_new_chunk(struct ggml_dyn_tallocr * alloc, size_t min_size) {
if (alloc->n_chunks >= GGML_VBUFFER_MAX_CHUNKS) {
return -1;
}
struct tallocr_chunk * chunk = calloc(1, sizeof(struct tallocr_chunk));
chunk->n_free_blocks = 1;
chunk->free_blocks[0].offset = 0;
// available space in a chunk is limited to max_chunk_size, but can be higher if:
// 1. a single tensor exceeds the maximum, and cannot fit any other way
// 2. we are running out of chunks
// backends will either manage to allocate the larger size, or report an error.
chunk->free_blocks[0].size = MAX(min_size, alloc->max_chunk_size);
if (alloc->n_chunks == GGML_VBUFFER_MAX_CHUNKS - 1) {
chunk->free_blocks[0].size = SIZE_MAX/2;
}
alloc->chunks[alloc->n_chunks] = chunk;
alloc->n_chunks++;
return alloc->n_chunks - 1;
}
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor == NULL) {
alloc->allocated_tensors[i].tensor = tensor;
alloc->allocated_tensors[i].offset = offset;
alloc->allocated_tensors[i].addr = addr;
return;
}
}
GGML_ABORT("out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].offset == offset) {
if (alloc->allocated_tensors[i].addr.chunk == addr.chunk && alloc->allocated_tensors[i].addr.offset == addr.offset) {
alloc->allocated_tensors[i].tensor = NULL;
return;
}
@@ -136,76 +201,94 @@ static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offs
}
#endif
static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
static struct buffer_address ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
int best_fit_chunk = -1;
int best_fit_block = -1;
size_t max_avail = 0;
// find the best fitting free block besides the last block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
// find the best fitting free block besides the last block, within any chunk
for (int c = 0; c < alloc->n_chunks; ++c) {
struct tallocr_chunk * chunk = alloc->chunks[c];
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < chunk->n_free_blocks - 1; i++) {
struct free_block * block = &chunk->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_chunk = c;
best_fit_block = i;
best_fit_size = block->size;
}
}
}
if (best_fit_block == -1) {
// the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1;
} else {
// this should never happen
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ABORT("not enough space in the buffer");
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
size_t offset = block->offset;
block->offset = offset + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
alloc->n_free_blocks--;
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, offset, tensor);
size_t cur_max = offset + size;
if (cur_max > alloc->max_size) {
// sort allocated_tensors by offset
for (int i = 0; i < 1024; i++) {
for (int j = i + 1; j < 1024; j++) {
if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
size_t tmp_offset = alloc->allocated_tensors[i].offset;
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
alloc->allocated_tensors[j].tensor = tmp_tensor;
alloc->allocated_tensors[j].offset = tmp_offset;
// no suitable block found, try the last block (this will grow a chunks size)
for (int c = 0; c < alloc->n_chunks; ++c) {
struct tallocr_chunk * chunk = alloc->chunks[c];
if (chunk->n_free_blocks > 0) {
struct free_block * block = &chunk->free_blocks[chunk->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) {
best_fit_chunk = c;
best_fit_block = chunk->n_free_blocks - 1;
break;
}
}
}
GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
}
if (best_fit_block == -1) {
// none of the existing chunks have enough space left
best_fit_chunk = ggml_dyn_tallocr_new_chunk(alloc, size);
best_fit_block = 0;
}
if (best_fit_chunk == -1) {
// since the last chunk always has virtually endless memory, this should never happen
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ABORT("graph allocation: failed to reserve memory");
}
struct tallocr_chunk * chunk = alloc->chunks[best_fit_chunk];
struct free_block * block = &chunk->free_blocks[best_fit_block];
struct buffer_address addr = {.chunk = best_fit_chunk, .offset = block->offset };
block->offset += size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
ggml_dyn_tallocr_remove_block(chunk, best_fit_block);
}
AT_PRINTF("block %d, offset %zu, chunk %d\n", best_fit_block, addr.offset, addr.chunk);
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, addr, tensor);
size_t cur_max = addr.offset + size;
if (cur_max > alloc->max_size[addr.chunk]) {
// sort allocated_tensors by chunk/offset
for (int i = 0; i < 1024; i++) {
for (int j = i + 1; j < 1024; j++) {
if (ggml_buffer_address_less(alloc->allocated_tensors[j].addr, alloc->allocated_tensors[i].addr)) {
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
struct buffer_address tmp_addr = alloc->allocated_tensors[i].addr;
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
alloc->allocated_tensors[i].addr = alloc->allocated_tensors[j].addr;
alloc->allocated_tensors[j].tensor = tmp_tensor;
alloc->allocated_tensors[j].addr = tmp_addr;
}
}
}
GGML_LOG_DEBUG("max_size[%d] = %.2f MB: tensors: ", addr.chunk, cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor) {
GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
alloc->allocated_tensors[i].offset,
alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
GGML_LOG_DEBUG("%s [%d: %zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
alloc->allocated_tensors[i].addr.chunk,
alloc->allocated_tensors[i].addr.offset,
alloc->allocated_tensors[i].addr.offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
}
}
@@ -213,78 +296,69 @@ static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t siz
}
#endif
alloc->max_size = MAX(alloc->max_size, offset + size);
chunk->max_size = MAX(chunk->max_size, addr.offset + size);
return offset;
return addr;
GGML_UNUSED(tensor);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
AT_PRINTF("%s: freeing %s at {chunk=%d, offset=%zu} (%zu bytes) - n_free_blocks = %d\n",
__func__, tensor->name, addr.chunk, addr.offset, size, alloc->chunks[addr.chunk]->n_free_blocks);
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, offset, tensor);
remove_allocated_tensor(alloc, addr, tensor);
#endif
struct tallocr_chunk * chunk = alloc->chunks[addr.chunk];
// see if we can merge with an existing block
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
for (int i = 0; i < chunk->n_free_blocks; i++) {
struct free_block * block = &chunk->free_blocks[i];
// check if ptr is at the end of the block
if (block->offset + block->size == offset) {
if (block->offset + block->size == addr.offset) {
block->size += size;
// check if we can merge with the next block
if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
block->size += alloc->free_blocks[i+1].size;
alloc->n_free_blocks--;
for (int j = i+1; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
if (i < chunk->n_free_blocks - 1) {
struct free_block * next = &chunk->free_blocks[i+1];
if (block->offset + block->size == next->offset) {
block->size += next->size;
ggml_dyn_tallocr_remove_block(chunk, i+1);
}
}
return;
}
// check if ptr is at the beginning of the block
if (offset + size == block->offset) {
block->offset = offset;
if (addr.offset + size == block->offset) {
block->offset = addr.offset;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
alloc->free_blocks[i-1].size += block->size;
alloc->n_free_blocks--;
for (int j = i; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
if (i > 0) {
struct free_block * prev = &chunk->free_blocks[i-1];
if (prev->offset + prev->size == block->offset) {
prev->size += block->size;
ggml_dyn_tallocr_remove_block(chunk, i);
}
}
return;
}
}
// otherwise, add a new block
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
alloc->free_blocks[i] = alloc->free_blocks[i-1];
}
// insert the new block
alloc->free_blocks[insert_pos].offset = offset;
alloc->free_blocks[insert_pos].size = size;
alloc->n_free_blocks++;
ggml_dyn_tallocr_insert_block(chunk, addr.offset, size);
GGML_UNUSED(tensor);
}
static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
alloc->n_free_blocks = 1;
alloc->free_blocks[0].offset = 0;
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
alloc->max_size = 0;
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; i++) {
free(alloc->chunks[i]);
alloc->chunks[i] = NULL;
}
alloc->n_chunks = 0;
#ifdef GGML_ALLOCATOR_DEBUG
for (int i = 0; i < 1024; i++) {
@@ -293,14 +367,14 @@ static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
#endif
}
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment, size_t max_buffer_size) {
struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
*alloc = (struct ggml_dyn_tallocr) {
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.max_size = */ 0,
/*.alignment = */ alignment,
/*.max_chunk_size = */ MIN(max_buffer_size, SIZE_MAX/2), // clamp to avoid overflows
/*.chunks = */ {NULL},
/*.n_chunks = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {{0}},
#endif
@@ -312,11 +386,79 @@ static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
}
static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
for (int i = 0; i < alloc->n_chunks; ++i) {
free(alloc->chunks[i]);
}
free(alloc);
}
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
return alloc->max_size;
size_t max_size = 0;
for (int i = 0; i < alloc->n_chunks; i++) {
max_size += alloc->chunks[i]->max_size;
}
return max_size;
}
// virtual buffer with contiguous memory range, split into multiple backend buffers (chunks)
struct vbuffer {
ggml_backend_buffer_t chunks[GGML_VBUFFER_MAX_CHUNKS];
};
static void ggml_vbuffer_free(struct vbuffer * buf) {
if (buf == NULL) {
return;
}
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; ++i) {
ggml_backend_buffer_free(buf->chunks[i]);
}
free(buf);
}
static int ggml_vbuffer_n_chunks(struct vbuffer * buf) {
int n = 0;
while (n < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[n]) n++;
return n;
}
static size_t ggml_vbuffer_size(struct vbuffer * buf) {
size_t size = 0;
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
size += ggml_backend_buffer_get_size(buf->chunks[i]);
}
return size;
}
static struct vbuffer * ggml_vbuffer_alloc(ggml_backend_buffer_type_t buft, const struct ggml_dyn_tallocr * talloc, enum ggml_backend_buffer_usage usage) {
struct vbuffer * buf = (struct vbuffer *)calloc(1, sizeof(struct vbuffer));
if (buf == NULL) {
return NULL;
}
for (int n = 0; n < talloc->n_chunks; n++) {
size_t chunk_size = talloc->chunks[n]->max_size;
buf->chunks[n] = ggml_backend_buft_alloc_buffer(buft, chunk_size);
if (buf->chunks[n] == NULL) {
ggml_vbuffer_free(buf);
return NULL;
}
ggml_backend_buffer_set_usage(buf->chunks[n], usage);
}
return buf;
}
static void ggml_vbuffer_tensor_alloc(struct vbuffer * buf, struct ggml_tensor * tensor, struct buffer_address buf_addr) {
void * base = ggml_backend_buffer_get_base(buf->chunks[buf_addr.chunk]);
void * addr = (char *)base + buf_addr.offset;
ggml_backend_tensor_alloc(buf->chunks[buf_addr.chunk], tensor, addr);
}
static void ggml_vbuffer_reset(struct vbuffer * buf) {
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
ggml_backend_buffer_reset(buf->chunks[i]);
}
}
@@ -328,13 +470,13 @@ struct hash_node {
int n_children;
int n_views;
int buffer_id;
size_t offset; // offset within the buffer
struct buffer_address addr;
bool allocated;
};
struct tensor_alloc {
int buffer_id;
size_t offset;
struct buffer_address addr;
size_t size_max; // 0 = pre-allocated, unused, or view
};
@@ -349,7 +491,7 @@ struct node_alloc {
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
struct vbuffer ** buffers; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
@@ -370,7 +512,7 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
GGML_ASSERT(galloc->bufts != NULL);
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
galloc->buffers = calloc(n_bufs, sizeof(struct vbuffer *));
GGML_ASSERT(galloc->buffers != NULL);
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
@@ -390,7 +532,8 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
if (galloc->buf_tallocs[i] == NULL) {
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
size_t max_size = ggml_backend_buft_get_max_size(bufts[i]);
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment, max_size);
}
}
galloc->n_buffers = n_bufs;
@@ -418,7 +561,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
}
}
if (!freed) {
ggml_backend_buffer_free(galloc->buffers[i]);
ggml_vbuffer_free(galloc->buffers[i]);
}
}
if (galloc->buf_tallocs != NULL) {
@@ -467,7 +610,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
hn->allocated = true;
assert(hn->offset == 0);
assert(hn->addr.offset == 0);
// try to reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
@@ -501,9 +644,9 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
assert(view_src_hn->offset == p_hn->offset);
assert(view_src_hn->addr.chunk == p_hn->addr.chunk && view_src_hn->addr.offset == p_hn->addr.offset);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent
view_src_hn->allocated = false;
return;
@@ -511,7 +654,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
} else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent
return;
}
@@ -522,9 +665,8 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
hn->buffer_id = buffer_id;
hn->offset = offset;
hn->addr = ggml_dyn_tallocr_alloc(alloc, size, node);
}
}
@@ -536,12 +678,11 @@ static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * n
}
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
size_t offset = hn->offset;
int buffer_id = hn->buffer_id;
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
ggml_dyn_tallocr_free_tensor(alloc, hn->addr, size, node);
hn->allocated = false;
}
@@ -692,24 +833,24 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
struct node_alloc * node_alloc = &galloc->node_allocs[i];
if (node->view_src || node->data) {
node_alloc->dst.buffer_id = -1;
node_alloc->dst.offset = SIZE_MAX;
node_alloc->dst.addr = GGML_BUFFER_ADDRESS_INVALID;
node_alloc->dst.size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
node_alloc->dst.buffer_id = hn->buffer_id;
node_alloc->dst.offset = hn->offset;
node_alloc->dst.addr = hn->addr;
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (!src || src->view_src || src->data) {
node_alloc->src[j].buffer_id = -1;
node_alloc->src[j].offset = SIZE_MAX;
node_alloc->src[j].addr = GGML_BUFFER_ADDRESS_INVALID;
node_alloc->src[j].size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
node_alloc->src[j].buffer_id = hn->buffer_id;
node_alloc->src[j].offset = hn->offset;
node_alloc->src[j].addr = hn->addr;
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
}
}
@@ -725,11 +866,11 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
if (leaf->view_src || leaf->data) {
galloc->leaf_allocs[i].leaf.buffer_id = -1;
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
galloc->leaf_allocs[i].leaf.addr = GGML_BUFFER_ADDRESS_INVALID;
galloc->leaf_allocs[i].leaf.size_max = 0;
} else {
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
galloc->leaf_allocs[i].leaf.offset = hn->offset;
galloc->leaf_allocs[i].leaf.addr = hn->addr;
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
}
}
@@ -744,7 +885,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
@@ -753,13 +894,12 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
ggml_vbuffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
if (galloc->buffers[i] == NULL) {
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
return false;
}
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
}
}
@@ -772,11 +912,11 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
int buffer_id = tensor_alloc->buffer_id;
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
assert(tensor->data || tensor->view_src || ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
if (tensor->view_src != NULL) {
if (tensor->buffer == NULL) {
assert(tensor_alloc->offset == SIZE_MAX);
assert(tensor_alloc->addr.offset == SIZE_MAX);
if (tensor->view_src->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
@@ -785,11 +925,9 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
}
} else {
if (tensor->data == NULL) {
assert(tensor_alloc->offset != SIZE_MAX);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
void * addr = (char *)base + tensor_alloc->offset;
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
assert(tensor_alloc->addr.offset != SIZE_MAX);
assert(ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
ggml_vbuffer_tensor_alloc(galloc->buffers[buffer_id], tensor, tensor_alloc->addr);
} else {
if (tensor->buffer == NULL) {
// this tensor was allocated without ggml-backend
@@ -874,7 +1012,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
// reset buffers
for (int i = 0; i < galloc->n_buffers; i++) {
if (galloc->buffers[i] != NULL) {
ggml_backend_buffer_reset(galloc->buffers[i]);
ggml_vbuffer_reset(galloc->buffers[i]);
}
}
@@ -917,7 +1055,7 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
}
}
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
return ggml_vbuffer_size(galloc->buffers[buffer_id]);
}
// utils

View File

@@ -342,6 +342,10 @@ struct ggml_cgraph {
// if you need the gradients, get them from the original graph
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
// ggml-alloc.c: true if the operation can reuse memory from its sources
GGML_API bool ggml_op_can_inplace(enum ggml_op op);
// Memory allocation
GGML_API void * ggml_aligned_malloc(size_t size);