mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-11 10:36:54 +00:00
Merge branch 'master' into gg/llama-kv-cache
ggml-ci
This commit is contained in:
@@ -1186,7 +1186,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
return;
|
||||
}
|
||||
}
|
||||
LLAMA_LOG_DEBUG("Grammar still awaiting trigger after token %d (`%s`) (buffer: `%s`)\n", token, piece.c_str(), grammar.trigger_buffer.c_str());
|
||||
LLAMA_LOG_DEBUG("Grammar still awaiting trigger after token %d (`%s`)\n", token, piece.c_str());
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -116,7 +116,7 @@ struct llama_grammar {
|
||||
llama_partial_utf8 partial_utf8;
|
||||
|
||||
// lazy grammars wait for trigger words or tokens before constraining the sampling.
|
||||
// we still ahve trigger_tokens for non-lazy grammars to force printing of special trigger tokens.
|
||||
// we still have trigger_tokens for non-lazy grammars to force printing of special trigger tokens.
|
||||
// (useful e.g. for tool_choice=required)
|
||||
bool lazy = false;
|
||||
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
|
||||
|
||||
@@ -6,13 +6,13 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# if defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# else
|
||||
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
# endif
|
||||
#else
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
#else
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...)
|
||||
# define LLAMA_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
//
|
||||
|
||||
@@ -57,7 +57,7 @@ struct llama_kv_cache {
|
||||
bool can_shift = false;
|
||||
|
||||
// Note: The value of head isn't only used to optimize searching
|
||||
// for a free KV slot. llama_decode_internal also uses it, so it
|
||||
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||
// cannot be freely changed after a slot has been allocated.
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
|
||||
@@ -1698,6 +1698,73 @@ struct llama_sampler * llama_sampler_init_penalties(
|
||||
);
|
||||
}
|
||||
|
||||
// top-n-sigma
|
||||
|
||||
struct llama_sampler_top_n_sigma {
|
||||
const float n;
|
||||
};
|
||||
|
||||
static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) {
|
||||
return "top-n-sigma";
|
||||
}
|
||||
|
||||
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
|
||||
|
||||
// find max logit and calculate mean
|
||||
float max = cur_p->data[0].logit;
|
||||
float logits_sum = 0;
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (cur_p->data[i].logit > max) {
|
||||
max = cur_p->data[i].logit;
|
||||
}
|
||||
logits_sum += cur_p->data[i].logit;
|
||||
}
|
||||
float mean = logits_sum/cur_p->size;
|
||||
|
||||
// calculate standard deviation
|
||||
float acc = 0;
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
acc += pow(cur_p->data[i].logit - mean, 2);
|
||||
}
|
||||
float std = sqrt(acc/cur_p->size);
|
||||
|
||||
//apply mask
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (cur_p->data[i].logit < max - (ctx->n * std)) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
}
|
||||
llama_sampler_softmax_impl(cur_p);
|
||||
}
|
||||
|
||||
static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx;
|
||||
return llama_sampler_init_top_n_sigma(ctx->n);
|
||||
}
|
||||
|
||||
static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) {
|
||||
delete (llama_sampler_top_n_sigma *) smpl->ctx;
|
||||
}
|
||||
|
||||
static struct llama_sampler_i llama_sampler_top_n_sigma_i = {
|
||||
/* .name = */ llama_sampler_top_n_sigma_name,
|
||||
/* .accept = */ nullptr,
|
||||
/* .apply = */ llama_sampler_top_n_sigma_apply,
|
||||
/* .reset = */ nullptr,
|
||||
/* .clone = */ llama_sampler_top_n_sigma_clone,
|
||||
/* .free = */ llama_sampler_top_n_sigma_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_top_n_sigma(float n) {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_top_n_sigma_i,
|
||||
/* .ctx = */ new llama_sampler_top_n_sigma {
|
||||
/* .n = */ n,
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// DRY
|
||||
|
||||
struct llama_sampler_dry {
|
||||
|
||||
@@ -708,7 +708,7 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
||||
const auto cpts = unicode_cpts_from_utf8(text);
|
||||
|
||||
// generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/6920#issuecomment-2081479935
|
||||
std::string text_collapsed;
|
||||
if (need_collapse) {
|
||||
// collapse all unicode categories
|
||||
|
||||
Reference in New Issue
Block a user