Merge branch 'master' into gg/llama-kv-cache

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-02-18 10:14:37 +02:00
156 changed files with 6433 additions and 2603 deletions

View File

@@ -96,6 +96,22 @@ if (LLAMA_LLGUIDANCE)
include(ExternalProject)
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
# Set the correct library file extension based on platform
if (WIN32)
set(LLGUIDANCE_LIB_NAME "llguidance.lib")
# Add Windows-specific libraries
set(LLGUIDANCE_PLATFORM_LIBS
ws2_32 # Windows Sockets API
userenv # For GetUserProfileDirectoryW
ntdll # For NT functions
bcrypt # For BCryptGenRandom
)
else()
set(LLGUIDANCE_LIB_NAME "libllguidance.a")
set(LLGUIDANCE_PLATFORM_LIBS "")
endif()
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.6.12:
@@ -106,17 +122,18 @@ if (LLAMA_LLGUIDANCE)
CONFIGURE_COMMAND ""
BUILD_COMMAND cargo build --release
INSTALL_COMMAND ""
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/libllguidance.a ${LLGUIDANCE_PATH}/llguidance.h
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
UPDATE_COMMAND ""
)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
add_library(llguidance STATIC IMPORTED)
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/libllguidance.a)
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME})
add_dependencies(llguidance llguidance_ext)
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance)
# Add platform libraries to the main target
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
endif ()
target_include_directories(${TARGET} PUBLIC .)

View File

@@ -365,6 +365,112 @@ static void common_params_print_usage(common_params_context & ctx_arg) {
print_options(specific_options);
}
static void common_params_print_completion(common_params_context & ctx_arg) {
std::vector<common_arg *> common_options;
std::vector<common_arg *> sparam_options;
std::vector<common_arg *> specific_options;
for (auto & opt : ctx_arg.options) {
if (opt.is_sparam) {
sparam_options.push_back(&opt);
} else if (opt.in_example(ctx_arg.ex)) {
specific_options.push_back(&opt);
} else {
common_options.push_back(&opt);
}
}
printf("_llama_completions() {\n");
printf(" local cur prev opts\n");
printf(" COMPREPLY=()\n");
printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
printf(" opts=\"");
auto print_options = [](const std::vector<common_arg *> & options) {
for (const common_arg * opt : options) {
for (const char * arg : opt->args) {
printf("%s ", arg);
}
}
};
print_options(common_options);
print_options(sparam_options);
print_options(specific_options);
printf("\"\n\n");
printf(" case \"$prev\" in\n");
printf(" --model)\n");
printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
printf(" return 0\n");
printf(" ;;\n");
printf(" --grammar-file)\n");
printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
printf(" return 0\n");
printf(" ;;\n");
printf(" --chat-template-file)\n");
printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
printf(" return 0\n");
printf(" ;;\n");
printf(" *)\n");
printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
printf(" return 0\n");
printf(" ;;\n");
printf(" esac\n");
printf("}\n\n");
std::set<std::string> executables = {
"llama-batched",
"llama-batched-bench",
"llama-bench",
"llama-cli",
"llama-convert-llama2c-to-ggml",
"llama-cvector-generator",
"llama-embedding",
"llama-eval-callback",
"llama-export-lora",
"llama-gbnf-validator",
"llama-gen-docs",
"llama-gguf",
"llama-gguf-hash",
"llama-gguf-split",
"llama-gritlm",
"llama-imatrix",
"llama-infill",
"llama-llava-cli",
"llama-llava-clip-quantize-cli",
"llama-lookahead",
"llama-lookup",
"llama-lookup-create",
"llama-lookup-merge",
"llama-lookup-stats",
"llama-minicpmv-cli",
"llama-parallel",
"llama-passkey",
"llama-perplexity",
"llama-q8dot",
"llama-quantize",
"llama-quantize-stats",
"llama-qwen2vl-cli",
"llama-retrieval",
"llama-run",
"llama-save-load-state",
"llama-server",
"llama-simple",
"llama-simple-chat",
"llama-speculative",
"llama-speculative-simple",
"llama-tokenize",
"llama-tts",
"llama-vdot"
};
for (const auto& exe : executables) {
printf("complete -F _llama_completions %s\n", exe.c_str());
}
}
static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
std::vector<ggml_backend_dev_t> devices;
auto dev_names = string_split<std::string>(value, ',');
@@ -426,6 +532,10 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
}
exit(0);
}
if (ctx_arg.params.completion) {
common_params_print_completion(ctx_arg);
exit(0);
}
} catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
ctx_arg.params = params_org;
@@ -494,6 +604,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
exit(0);
}
));
add_opt(common_arg(
{"--completion-bash"},
"print source-able bash completion script for llama.cpp",
[](common_params & params) {
params.completion = true;
}
));
add_opt(common_arg(
{"--verbose-prompt"},
string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
@@ -674,7 +791,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
));
add_opt(common_arg(
{"--no-context-shift"},
string_format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
[](common_params & params) {
params.ctx_shift = false;
}
@@ -946,6 +1063,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.sampling.min_p = std::stof(value);
}
).set_sparam());
add_opt(common_arg(
{"--top-nsigma"}, "N",
string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
[](common_params & params, const std::string & value) {
params.sampling.top_n_sigma = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
add_opt(common_arg(
{"--xtc-probability"}, "N",
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
@@ -1445,7 +1569,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"- isolate: only spawn threads on CPUs on the node that execution started on\n"
"- numactl: use the CPU map provided by numactl\n"
"if run without this previously, it is recommended to drop the system page cache before using this\n"
"see https://github.com/ggerganov/llama.cpp/issues/1437",
"see https://github.com/ggml-org/llama.cpp/issues/1437",
[](common_params & params, const std::string & value) {
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
@@ -1975,6 +2099,17 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.use_jinja = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg(
{"--reasoning-format"}, "FORMAT",
"reasoning format (default: deepseek; allowed values: deepseek, none)\n"
"controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
"only supported for non-streamed responses",
[](common_params & params, const std::string & value) {
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
else { std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
add_opt(common_arg(
{"--chat-template"}, "JINJA_TEMPLATE",
string_format(
@@ -2112,7 +2247,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_LOG_VERBOSITY"));
add_opt(common_arg(
{"--log-prefix"},
"Enable prefx in log messages",
"Enable prefix in log messages",
[](common_params &) {
common_log_set_prefix(common_log_main(), true);
}

View File

@@ -12,11 +12,13 @@ std::string common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
case COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING: return "DeepSeek R1 (extract reasoning)";
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
case COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING: return "Command R7B (extract reasoning)";
default:
throw std::runtime_error("Unknown chat format");
}
@@ -105,7 +107,6 @@ static common_chat_msg parse_json_tool_calls(
std::sregex_iterator rend;
std::sregex_iterator rit(it, end, function_regex);
if (rit == rend) {
fprintf(stderr, "No more tool calls found\n");
result.content += std::string(it, end);
break;
}
@@ -115,14 +116,21 @@ static common_chat_msg parse_json_tool_calls(
json arguments;
if (!parse_json(it, end, arguments)) {
throw std::runtime_error("Failed to parse json tool call arguments");
throw std::runtime_error("Failed to parse json tool call arguments: " + input);
}
if (!std::regex_search(it, end, match, close_regex)) {
throw std::runtime_error("Malformed input, missing closing pattern");
throw std::runtime_error("Malformed input, missing closing pattern: " + input);
}
it = match.suffix().first;
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
}
if (!result.tool_calls.empty()) {
if (!string_strip(result.content).empty()) {
LOG_WRN("Content found with tool calls: %s\n", result.content.c_str());
}
result.content = "";
}
return result;
}
@@ -134,11 +142,11 @@ static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& in
result.role = "assistant";
const auto process_tool_calls = [&](const json & tool_calls) {
for (const auto & tool_call : tool_calls) {
const auto & arguments = tool_call["arguments"];
const auto & arguments = tool_call.at("arguments");
result.tool_calls.push_back({
tool_call["name"],
tool_call.at("name"),
arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
tool_call.contains("id") ? tool_call["id"] : "",
tool_call.contains("id") ? tool_call.at("id") : "",
});
}
};
@@ -155,7 +163,7 @@ static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& in
static void foreach_function(const json & tools, const std::function<void(const json &)> & fn) {
for (const auto & tool : tools) {
if (!tool.contains("type") || tool["type"] != "function" || !tool.contains("function")) {
if (!tool.contains("type") || tool.at("type") != "function" || !tool.contains("function")) {
LOG_INF("Skipping tool without function: %s", tool.dump(2).c_str());
continue;
}
@@ -190,27 +198,27 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
auto tool_call_schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
const auto & function = tool.at("function");
auto tool_schema = json {
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function["name"]},
{"const", function.at("name")},
}},
{"arguments", function["parameters"]},
{"arguments", function.at("parameters")},
}},
{"required", json::array({"name", "arguments"})},
};
if (function.contains("description")) {
tool_schema["description"] = function["description"];
tool_schema["description"] = function.at("description");
}
if (inputs.parallel_tool_calls) {
tool_schema["properties"]["id"] = {
tool_schema.at("properties")["id"] = {
{"type", "string"},
{"minLength", 4},
};
tool_schema["required"].push_back("id");
tool_schema.at("required").push_back("id");
}
tool_call_schemas.emplace_back(tool_schema);
});
@@ -275,21 +283,21 @@ static common_chat_msg common_chat_parse_generic(const std::string & input) {
common_chat_msg result;
result.role = "assistant";
if (data.contains("tool_calls")) {
for (const auto & tool_call : data["tool_calls"]) {
for (const auto & tool_call : data.at("tool_calls")) {
result.tool_calls.push_back({
tool_call["name"],
tool_call["arguments"].dump(),
tool_call.contains("id") ? tool_call["id"] : "",
tool_call.at("name"),
tool_call.at("arguments").dump(),
tool_call.contains("id") ? tool_call.at("id") : "",
});
}
} else if (data.contains("tool_call")) {
result.tool_calls.push_back({
data["tool_call"]["name"],
data["tool_call"]["arguments"].dump(),
data.at("tool_call").at("name"),
data.at("tool_call").at("arguments").dump(),
/* id= */ "",
});
} else if (data.contains("response")) {
const auto & response = data["response"];
const auto & response = data.at("response");
result.content = response.is_string() ? response.get<std::string>() : response.dump(2);
}
return result;
@@ -301,7 +309,7 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
const auto & function = tool.at("function");
schemas.push_back({
{"type", "object"},
{"properties", {
@@ -309,9 +317,9 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
// It's hard to constrain that for now (while reusing the JSON schema conversion), so we're just expecting a plain object.
{"name", {
{"type", "string"},
{"const", function["name"]},
{"const", function.at("name")},
}},
{"arguments", function["parameters"]},
{"arguments", function.at("parameters")},
{"id", {
{"type", "string"},
// Nemo's template expects a 9-character alphanumeric ID.
@@ -346,7 +354,7 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
const auto & function = tool.at("function");
schemas.push_back({
{"type", "object"},
{"properties", {
@@ -357,9 +365,9 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
}},
{"tool_name", {
{"type", "string"},
{"const", function["name"]},
{"const", function.at("name")},
}},
{"parameters", function["parameters"]},
{"parameters", function.at("parameters")},
}},
{"required", json::array({"tool_call_id", "tool_name", "parameters"})},
});
@@ -382,39 +390,65 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
"<|END_THINKING|>",
"<|END_ACTION|>",
};
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
auto adjusted_messages = json::array();
for (const auto & msg : inputs.messages) {
auto has_reasoning_content = msg.contains("reasoning_content") && msg.at("reasoning_content").is_string();
auto has_tool_calls = msg.contains("tool_calls") && msg.at("tool_calls").is_array();
if (has_reasoning_content && has_tool_calls) {
auto adjusted_message = msg;
adjusted_message["tool_plan"] = msg.at("reasoning_content");
adjusted_message.erase("reasoning_content");
adjusted_messages.push_back(adjusted_message);
} else {
adjusted_messages.push_back(msg);
}
}
data.prompt = apply(tmpl, adjusted_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {});
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING : COMMON_CHAT_FORMAT_COMMAND_R7B;
return data;
}
static common_chat_msg common_chat_parse_command_r7b(const std::string & input) {
static std::regex response_regex("<\\|START_RESPONSE\\|>([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
static std::regex thought_action_regex("<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|><\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
static common_chat_msg common_chat_parse_command_r7b(const std::string & input, bool extract_reasoning) {
static std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|>)([\\s\\S\\n\\r]*)");
static std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
static std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
std::smatch match;
common_chat_msg result;
result.role = "assistant";
if (std::regex_match(input, match, response_regex)) {
result.content = match[1].str();
} else if (std::regex_match(input, match, thought_action_regex)) {
result.tool_plan = match[1].str();
auto actions_str = match[2].str();
std::string rest = input;
if (std::regex_match(rest, match, thought_regex)) {
if (extract_reasoning) {
result.reasoning_content = match[2].str();
} else if (!match[2].str().empty()) {
// Let the unparsed thinking tags through in content only if their insides aren't empty.
result.content = match[1].str();
}
rest = match[3].str();
}
if (std::regex_match(rest, match, action_regex)) {
auto actions_str = match[1].str();
auto actions = json::parse(actions_str);
for (const auto & action : actions) {
result.tool_calls.push_back({
/* .name = */ action["tool_name"],
/* .arguments = */ action["parameters"].dump(),
/* .id = */ action["tool_call_id"],
/* .name = */ action.at("tool_name"),
/* .arguments = */ action.at("parameters").dump(),
/* .id = */ action.at("tool_call_id"),
});
}
} else if (std::regex_match(rest, match, response_regex)) {
auto response = match[1].str();
result.content += response;
} else {
LOG_ERR("Failed to parse command_r output");
result.content = input;
result.content += rest;
}
return result;
}
static void expect_tool_parameters(const std::string & name, const json & parameters, const std::vector<std::string> & expected_properties) {
if (!parameters.is_object() || !parameters.contains("type") || parameters["type"] != "object" || !parameters.contains("properties") || !parameters.contains("required")) {
if (!parameters.is_object() || !parameters.contains("type") || parameters.at("type") != "object" || !parameters.contains("properties") || !parameters.contains("required")) {
throw std::runtime_error("Parameters of tool " + name + " must be an object w/ required properties");
}
const auto & parameters_properties = parameters.at("properties");
@@ -468,9 +502,9 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
};
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
// https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/tool_runtime
@@ -546,34 +580,90 @@ static common_chat_msg common_chat_parse_llama_3_1(const std::string & input, bo
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto args_rule = builder.add_schema(name + "-args", parameters);
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<tool▁call▁begin>function<tool▁sep>" + name + "\\n```json\\n\" " + args_rule + " \"```<tool▁call▁end>\""));
});
data.grammar_triggers.push_back({"<tool▁calls▁begin>", /* .at_start = */ false});
data.preserved_tokens = {
"<tool▁sep>",
"<tool▁call▁end>",
};
builder.add_rule("root", "\"<tool▁calls▁begin>\" (" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " space");
}, grammar_options);
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != "required" && inputs.json_schema.is_null();
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
auto args_rule = builder.add_schema(name + "-args", parameters);
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<tool▁call▁begin>function<tool▁sep>" + name + "\\n"
"```json\\n\" " + args_rule + " \"```<tool▁call▁end>\""));
});
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
// so we accept common variants (then it's all constrained)
builder.add_rule("root",
"( \"<tool▁calls▁begin>\" | \"<tool_calls_begin>\" | \"<tool calls begin>\" | \"<tool\\\\_calls\\\\_begin>\" ) "
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
"\"<tool▁calls▁end>\""
" space");
data.grammar_triggers.push_back({"<tool▁calls▁begin>", /* .at_start = */ false});
data.grammar_triggers.push_back({"<tool_calls_begin>", /* .at_start = */ false});
data.grammar_triggers.push_back({"<tool calls begin>", /* .at_start = */ false});
data.grammar_triggers.push_back({"<tool\\_calls\\_begin>", /* .at_start = */ false});
data.preserved_tokens = {
"<think>",
"</think>",
"<tool▁sep>",
"<tool▁calls▁end",
"<tool▁call▁end>",
};
}, grammar_options);
}
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
// Hacks to fix the official (broken) prompt.
// It is advisable to use --chat-template-file models/templates/llama-cpp-deepseek-r1.jinja instead,
// until the official template is fixed.
if (tmpl.source().find("{% if ns.is_tool %}{{'<tool▁outputs▁end>'}}") != std::string::npos) {
// Don't leave the chat dangling after tool results
if (string_ends_with(prompt, "<tool▁outputs▁end>")) {
prompt += "<end▁of▁sentence>";
if (inputs.add_generation_prompt) {
prompt += "<Assistant>";
}
}
// Fix up tool call delta example added by Minja
prompt = std::regex_replace(
prompt,
std::regex("(<tool▁call▁end>)[\\s\\r\\n]*(<tool▁outputs▁begin>|<User>)"),
"$1<tool▁calls▁end><end▁of▁sentence>$2");
}
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_R1;
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING : COMMON_CHAT_FORMAT_DEEPSEEK_R1;
return data;
}
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input) {
static std::regex trigger_regex("<tool▁calls▁begin>");
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
static std::regex function_regex("<tool▁call▁begin>function<tool▁sep>([^\n]+)\n```json\n");
static std::regex close_regex("```<tool▁call▁end>");
return parse_json_tool_calls(input, trigger_regex, function_regex, close_regex);
static std::regex close_regex("```[\\s\\r\\n]*<tool▁call▁end>");
static std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
static std::regex tool_calls_regex("[\\s\\r\\n]*(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>)([\\s\\S\\r\\n]*?)<tool▁calls▁end>");
common_chat_msg msg;
msg.role = "assistant";
std::smatch match;
if (std::regex_match(input, match, reasoning_content_regex)) {
std::string rest;
if (extract_reasoning) {
msg.reasoning_content = string_strip(match[2].str());
} else {
msg.content = match[1].str();
}
rest = match[3].str();
if (std::regex_search(rest, match, tool_calls_regex)) {
auto tool_calls = match[1].str();
auto msg2 = parse_json_tool_calls(tool_calls, std::nullopt, function_regex, close_regex);
msg.tool_calls = std::move(msg2.tool_calls);
} else {
msg.content += std::string(rest.begin() + rest.find_first_not_of(" \r\n"), rest.end());
}
} else {
msg.content = input;
}
return msg;
}
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
@@ -583,20 +673,20 @@ static common_chat_params common_chat_params_init_firefunction_v2(const common_c
{"datetime", "Jan 29 2025 13:00:00 GMT"},
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
});
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
const auto & function = tool.at("function");
schemas.push_back({
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function["name"]},
{"const", function.at("name")},
}},
{"arguments", function["parameters"]},
{"arguments", function.at("parameters")},
}},
{"required", json::array({"name", "arguments", "id"})},
});
@@ -628,15 +718,15 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> first_tool_rules;
std::vector<std::string> subsequent_tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
auto args_rule = builder.add_schema(name + "-args", parameters);
first_tool_rules.push_back(builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule));
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\">>>" + name + "\\n\" " + args_rule));
@@ -716,9 +806,9 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
const auto & parameters = function["parameters"];
std::string name = function["name"];
const auto & function = tool.at("function");
const auto & parameters = function.at("parameters");
std::string name = function.at("name");
if (name == "python" || name == "ipython") {
if (!parameters.contains("type")) {
throw std::runtime_error("Missing type in python tool");
@@ -789,9 +879,9 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
tool_rules.push_back(builder.add_schema(name + "-call", {
{"type", "object"},
@@ -839,9 +929,9 @@ static common_chat_msg common_chat_parse_hermes_2_pro(const std::string & input)
if (!parse_json(it, end, call)) {
throw std::runtime_error("Failed to parse json tool call");
}
const auto & arguments = call["arguments"];
const auto & arguments = call.at("arguments");
result.tool_calls.push_back({
call["name"],
call.at("name"),
arguments.dump(),
// arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
/* id= */ "",
@@ -878,53 +968,78 @@ static common_chat_params common_chat_params_init_without_tools(const common_cha
}
data.grammar = json_schema_to_grammar(inputs.json_schema);
} else {
data.grammar = inputs.grammar.empty();
data.grammar = inputs.grammar;
}
return data;
}
common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
auto has_tools = !inputs.tools.is_null() && inputs.tool_choice != "none";
LOG_DBG("[%s] has_tools=%s\n", __func__, has_tools ? "true" : "false");
const auto & src = tmpl.source();
const auto & caps = tmpl.original_caps();
if (has_tools && !inputs.grammar.empty()) {
throw std::runtime_error("Cannot specify grammar with tools");
if (inputs.tools.is_array()) {
if (inputs.tool_choice != "none" && !inputs.grammar.empty()) {
throw std::runtime_error("Cannot specify grammar with tools");
}
if (caps.supports_tool_calls && !caps.supports_tools) {
LOG_WRN("Template supports tool calls but does not natively describe tools. The fallback behaviour used may produce bad results, inspect prompt w/ --verbose & consider overriding the template.\n");
}
}
const auto & src = tmpl.source();
// DeepSeek R1: use handler in all cases except json schema (thinking / tools).
if (src.find("<tool▁calls▁begin>") != std::string::npos && inputs.json_schema.is_null()) {
return common_chat_params_init_deepseek_r1(tmpl, inputs);
}
// Command R7B: : use handler in all cases except json schema (thinking / tools).
if (src.find("<|END_THINKING|><|START_ACTION|>") != std::string::npos && inputs.json_schema.is_null()) {
return common_chat_params_init_command_r7b(tmpl, inputs);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((!inputs.tools.is_array() && inputs.json_schema.is_object())) {
return common_chat_params_init_generic(tmpl, inputs);
}
// Functionary prepends "all\n" to plain content outputs, so we use its handler in all cases.
if (src.find(">>>all") != std::string::npos) {
// Functionary prepends "all\n" to plain content outputs, so we use the parser no matter when
return common_chat_params_init_functionary_v3_2(tmpl, inputs);
}
// Firefunction v2 requires datetime and functions in the context even w/o tools, so we also use its handler in all cases.
if (src.find(" functools[") != std::string::npos) {
// Firefunction v2 requires datetime and functions in the context, even w/o tools.
return common_chat_params_init_firefunction_v2(tmpl, inputs);
}
if (!has_tools) {
// Plain handler (no tools)
if (inputs.tools.is_null() || inputs.tool_choice == "none") {
return common_chat_params_init_without_tools(tmpl, inputs);
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos) {
return common_chat_params_init_hermes_2_pro(tmpl, inputs);
}
// Functionary v3.1 (w/ tools)
if (src.find("<|start_header_id|>") != std::string::npos
&& src.find("<function=") != std::string::npos) {
return common_chat_params_init_functionary_v3_1_llama_3_1(tmpl, inputs);
}
// Llama 3.1, 3.2, 3.3 (w/ tools)
if (src.find("<|start_header_id|>ipython<|end_header_id|>") != std::string::npos) {
auto allow_python_tag_builtin_tools = src.find("<|python_tag|>") != std::string::npos;
return common_chat_params_init_llama_3_1_tool_calls(tmpl, inputs, allow_python_tag_builtin_tools);
}
if (src.find("<tool▁calls▁begin>") != std::string::npos) {
return common_chat_params_init_deepseek_r1(tmpl, inputs);
}
// Mistral Nemo (w/ tools)
if (src.find("[TOOL_CALLS]") != std::string::npos) {
return common_chat_params_init_mistral_nemo(tmpl, inputs);
}
if (src.find("<|END_THINKING|><|START_ACTION|>") != std::string::npos) {
return common_chat_params_init_command_r7b(tmpl, inputs);
}
// Generic fallback
return common_chat_params_init_generic(tmpl, inputs);
}
@@ -949,7 +1064,9 @@ common_chat_msg common_chat_parse(const std::string & input, common_chat_format
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS:
return common_chat_parse_llama_3_1(input, /* with_builtin_tools= */ true);
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
return common_chat_parse_deepseek_r1(input);
return common_chat_parse_deepseek_r1(input, /* extract_reasoning= */ false);
case COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING:
return common_chat_parse_deepseek_r1(input, /* extract_reasoning= */ true);
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
return common_chat_parse_functionary_v3_2(input);
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
@@ -959,7 +1076,9 @@ common_chat_msg common_chat_parse(const std::string & input, common_chat_format
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
return common_chat_parse_firefunction_v2(input);
case COMMON_CHAT_FORMAT_COMMAND_R7B:
return common_chat_parse_command_r7b(input);
return common_chat_parse_command_r7b(input, /* extract_reasoning= */ false);
case COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING:
return common_chat_parse_command_r7b(input, /* extract_reasoning= */ true);
default:
throw std::runtime_error("Unsupported format: " + common_chat_format_name(format));
}

View File

@@ -19,6 +19,7 @@ struct common_chat_inputs {
bool stream;
std::string grammar;
bool add_generation_prompt = true;
bool extract_reasoning = true;
};
enum common_chat_format {
@@ -28,11 +29,13 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};

View File

@@ -140,6 +140,7 @@ struct common_params_sampling {
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float top_n_sigma = -1.00f;// -1.0 = disabled
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool ignore_eos = false;
@@ -202,6 +203,11 @@ struct common_params_vocoder {
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
};
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
@@ -292,6 +298,7 @@ struct common_params {
bool kl_divergence = false; // compute KL divergence
bool usage = false; // print usage
bool completion = false; // print source-able completion script
bool use_color = false; // use color to distinguish generations and inputs
bool special = false; // enable special token output
bool interactive = false; // interactive mode
@@ -346,6 +353,7 @@ struct common_params {
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
std::vector<std::string> api_keys;
@@ -424,13 +432,13 @@ bool set_process_priority(enum ggml_sched_priority prio);
//
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# if defined(__MINGW32__) && !defined(__clang__)
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# else
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
# endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
#endif
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
@@ -623,7 +631,7 @@ struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_tool_call> tool_calls;
std::string tool_plan = "";
std::string reasoning_content = "";
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid

View File

@@ -1,5 +1,6 @@
#include "log.h"
#include <chrono>
#include <condition_variable>
#include <cstdarg>
#include <cstdio>

View File

@@ -15,7 +15,7 @@
#ifndef __GNUC__
# define LOG_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
#elif defined(__MINGW32__) && !defined(__clang__)
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))

View File

@@ -134,11 +134,11 @@ std::string common_params_sampling::print() const {
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
mirostat, mirostat_eta, mirostat_tau);
return std::string(result);
@@ -151,12 +151,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
lparams.no_perf = params.no_perf;
std::vector<const char *> trigger_words;
trigger_words.reserve(params.grammar_trigger_words.size());
for (const auto & str : params.grammar_trigger_words) {
trigger_words.push_back(str.word.c_str());
}
struct llama_sampler * grmr;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
@@ -165,6 +159,12 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<const char *> trigger_words;
trigger_words.reserve(params.grammar_trigger_words.size());
for (const auto & str : params.grammar_trigger_words) {
trigger_words.push_back(str.word.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
trigger_words.data(), trigger_words.size(),
@@ -188,45 +188,51 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data()));
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));

View File

@@ -9,7 +9,7 @@ struct common_speculative_params {
int n_draft = 16; // max drafted tokens
int n_reuse = 256;
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
float p_min = 0.9f; // min probability required to accept a token in the draft
};
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);