model: support GLM 4.5 family of models (#14939)

* model: Add GLM 4.5 (#14921)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Merge in PR suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: Add GLM 4.5 family of models (#14921)

1. Updated tensor_mapping.py with NextN tensor mappings

- Added proper tensor mappings for all NextN/MTP tensors in /Users/samm/git/llama.cpp/gguf-py/gguf/tensor_mapping.py
- Added mappings for: eh_proj, embed_tokens, enorm, hnorm, shared_head.head, shared_head.norm

2. Added num_nextn_predict_layers configuration

- Added LLM_KV_NUM_NEXTN_PREDICT_LAYERS constant to llama-arch.h and llama-arch.cpp
- Added num_nextn_predict_layers field to llama_hparams struct
- Updated GLM4_MOE parameter loading in llama-model.cpp to read this parameter
- Modified tensor loading logic to conditionally load NextN tensors based on num_nextn_predict_layers
- Added GGUF writer support in gguf_writer.py with add_num_nextn_predict_layers() method
- Updated conversion script to extract and write this parameter from HuggingFace config

3. Added FIM tokens for GLM4_MOE

- Added GLM-4.5's FIM tokens to llama-vocab.cpp:
  - <|code_prefix|> for FIM_PRE
  - <|code_suffix|> for FIM_SUF
  - <|code_middle|> for FIM_MID

4. Removed manual NextN tensor handling

- Removed the special-case handling in convert_hf_to_gguf.py that manually mapped NextN tensors
- NextN tensors are now handled automatically through the proper tensor mapping system

* glm 4.5 update tensors names

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

* Apply suggestions from code review

* patch broken chat template

* typings fix

* add TENSOR_SKIP flag


Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update src/llama-model-loader.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
Sam
2025-08-05 04:29:25 +10:00
committed by GitHub
parent 2721257e3e
commit ef0144c087
15 changed files with 594 additions and 8 deletions

View File

@@ -678,6 +678,9 @@ class TextModel(ModelBase):
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
# ref: https://huggingface.co/zai-org/GLM-4.5-Air
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
@@ -6696,6 +6699,139 @@ class Glm4Model(TextModel):
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Glm4MoeForCausalLM")
class Glm4MoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.GLM4_MOE
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
# Patch broken chat template
if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
special_vocab.chat_template = special_vocab.chat_template.replace(
"""{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
"""{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = (
self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
)
self.gguf_writer.add_rope_dimension_count(
int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
)
# MoE parameters - Use only routed expert count (shared experts handled separately)
if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
self.gguf_writer.add_expert_count(n_routed_experts)
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
self.gguf_writer.add_expert_shared_count(n_shared_experts)
if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
# Expert gating function (sigmoid for GLM4_MOE)
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
# Routed scaling factor
if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
# Normalise topk probabilities
if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
# NextN/MTP prediction layers
if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
) -> Iterable[tuple[str, Tensor]]:
if name.startswith("model.visual."): # ignore visual part
return []
elif name.startswith("model.language_model."):
name = name.replace("language_model.", "") # for multimodal variants
# Handle main token embedding (but not layer-specific NextN embeddings)
if name == "model.embed_tokens.weight" and ".layers." not in name:
return [(self.map_tensor_name("token_embd.weight"), data_torch)]
# Handle routed experts
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
new_name = self.map_tensor_name(name)
return [(new_name, data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(TextModel):
model_arch = gguf.MODEL_ARCH.CHATGLM