mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	support convert starcoder weights to gguf
This commit is contained in:
		
							
								
								
									
										252
									
								
								convert-starcoder-hf-to-gguf.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										252
									
								
								convert-starcoder-hf-to-gguf.py
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,252 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
# HF falcon--> gguf conversion
 | 
			
		||||
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import json
 | 
			
		||||
import os
 | 
			
		||||
import struct
 | 
			
		||||
import sys
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
from typing import Any
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from transformers import AutoTokenizer  # type: ignore[import]
 | 
			
		||||
 | 
			
		||||
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
			
		||||
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | 
			
		||||
import gguf
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def bytes_to_unicode():
 | 
			
		||||
    # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | 
			
		||||
    """
 | 
			
		||||
    Returns list of utf-8 byte and a corresponding list of unicode strings.
 | 
			
		||||
    The reversible bpe codes work on unicode strings.
 | 
			
		||||
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | 
			
		||||
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | 
			
		||||
    This is a significant percentage of your normal, say, 32K bpe vocab.
 | 
			
		||||
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | 
			
		||||
    And avoids mapping to whitespace/control characters the bpe code barfs on.
 | 
			
		||||
    """
 | 
			
		||||
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
 | 
			
		||||
    cs = bs[:]
 | 
			
		||||
    n = 0
 | 
			
		||||
    for b in range(2**8):
 | 
			
		||||
        if b not in bs:
 | 
			
		||||
            bs.append(b)
 | 
			
		||||
            cs.append(2**8+n)
 | 
			
		||||
            n += 1
 | 
			
		||||
    return dict(zip(bs, (chr(n) for n in cs)))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def count_model_parts(dir_model: Path) -> int:
 | 
			
		||||
    num_parts = 0
 | 
			
		||||
    for filename in os.listdir(dir_model):
 | 
			
		||||
        if filename.startswith("pytorch_model-"):
 | 
			
		||||
            num_parts += 1
 | 
			
		||||
 | 
			
		||||
    if num_parts > 0:
 | 
			
		||||
        print("gguf: found " + str(num_parts) + " model parts")
 | 
			
		||||
    return num_parts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args() -> argparse.Namespace:
 | 
			
		||||
    parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
 | 
			
		||||
    parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
 | 
			
		||||
    parser.add_argument("--outfile",    type=Path,           help="path to write to; default: based on input")
 | 
			
		||||
    parser.add_argument("model",        type=Path,           help="directory containing model file, or model file itself (*.bin)")
 | 
			
		||||
    parser.add_argument("ftype",        type=int,            help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
 | 
			
		||||
    return parser.parse_args()
 | 
			
		||||
 | 
			
		||||
args = parse_args()
 | 
			
		||||
 | 
			
		||||
dir_model = args.model
 | 
			
		||||
ftype = args.ftype
 | 
			
		||||
if not dir_model.is_dir():
 | 
			
		||||
    print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | 
			
		||||
    sys.exit(1)
 | 
			
		||||
 | 
			
		||||
# possible tensor data types
 | 
			
		||||
#   ftype == 0 -> float32
 | 
			
		||||
#   ftype == 1 -> float16
 | 
			
		||||
 | 
			
		||||
# map from ftype to string
 | 
			
		||||
ftype_str = ["f32", "f16"]
 | 
			
		||||
 | 
			
		||||
if args.outfile is not None:
 | 
			
		||||
    fname_out = args.outfile
 | 
			
		||||
else:
 | 
			
		||||
    # output in the same directory as the model by default
 | 
			
		||||
    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | 
			
		||||
 | 
			
		||||
print("gguf: loading model "+dir_model.name)
 | 
			
		||||
 | 
			
		||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
			
		||||
    hparams = json.load(f)
 | 
			
		||||
 | 
			
		||||
if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
 | 
			
		||||
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
			
		||||
 | 
			
		||||
    sys.exit(1)
 | 
			
		||||
 | 
			
		||||
# get number of model parts
 | 
			
		||||
num_parts = count_model_parts(dir_model)
 | 
			
		||||
 | 
			
		||||
ARCH=gguf.MODEL_ARCH.STARCODER
 | 
			
		||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
			
		||||
 | 
			
		||||
print("gguf: get model metadata")
 | 
			
		||||
 | 
			
		||||
block_count = hparams["n_layer"]
 | 
			
		||||
 | 
			
		||||
gguf_writer.add_name("StarCoder")
 | 
			
		||||
gguf_writer.add_context_length(2048) # not in config.json
 | 
			
		||||
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
 | 
			
		||||
gguf_writer.add_embedding_length(hparams["n_embd"])
 | 
			
		||||
gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
 | 
			
		||||
gguf_writer.add_block_count(block_count)
 | 
			
		||||
gguf_writer.add_head_count(hparams["n_head"])
 | 
			
		||||
if "n_head_kv" in hparams:
 | 
			
		||||
    gguf_writer.add_head_count_kv(hparams["n_head_kv"])
 | 
			
		||||
else:
 | 
			
		||||
    gguf_writer.add_head_count_kv(1)
 | 
			
		||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
 | 
			
		||||
gguf_writer.add_file_type(ftype)
 | 
			
		||||
 | 
			
		||||
# TOKENIZATION
 | 
			
		||||
 | 
			
		||||
print("gguf: get tokenizer metadata")
 | 
			
		||||
 | 
			
		||||
tokens: list[bytearray] = []
 | 
			
		||||
scores: list[float] = []
 | 
			
		||||
toktypes: list[int] = []
 | 
			
		||||
 | 
			
		||||
tokenizer_json_file = dir_model / 'tokenizer.json'
 | 
			
		||||
if not tokenizer_json_file.is_file():
 | 
			
		||||
    print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
 | 
			
		||||
    sys.exit(1)
 | 
			
		||||
 | 
			
		||||
# gpt2 tokenizer
 | 
			
		||||
gguf_writer.add_tokenizer_model("gpt2")
 | 
			
		||||
 | 
			
		||||
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
 | 
			
		||||
    tokenizer_json = json.load(f)
 | 
			
		||||
 | 
			
		||||
print("gguf: get gpt2 tokenizer vocab")
 | 
			
		||||
 | 
			
		||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
 | 
			
		||||
# This causes downstream issues with mismatched tensor sizes when running the inference
 | 
			
		||||
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
 | 
			
		||||
 | 
			
		||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
 | 
			
		||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | 
			
		||||
 | 
			
		||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | 
			
		||||
byte_encoder = bytes_to_unicode()
 | 
			
		||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
 | 
			
		||||
 | 
			
		||||
for i in range(vocab_size):
 | 
			
		||||
    if i in reverse_vocab:
 | 
			
		||||
        try:
 | 
			
		||||
            text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
 | 
			
		||||
        except KeyError:
 | 
			
		||||
            text = bytearray()
 | 
			
		||||
            for c in reverse_vocab[i]:
 | 
			
		||||
                if ord(c) < 256:  # single byte character
 | 
			
		||||
                    text.append(byte_decoder[ord(c)])
 | 
			
		||||
                else:  # multibyte special token character
 | 
			
		||||
                    text.extend(c.encode('utf-8'))
 | 
			
		||||
    else:
 | 
			
		||||
        print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | 
			
		||||
        pad_token = f"[PAD{i}]".encode("utf8")
 | 
			
		||||
        text = bytearray(pad_token)
 | 
			
		||||
 | 
			
		||||
    tokens.append(text)
 | 
			
		||||
    scores.append(0.0)                      # dymmy
 | 
			
		||||
    toktypes.append(gguf.TokenType.NORMAL)  # dummy
 | 
			
		||||
 | 
			
		||||
gguf_writer.add_token_list(tokens)
 | 
			
		||||
gguf_writer.add_token_scores(scores)
 | 
			
		||||
gguf_writer.add_token_types(toktypes)
 | 
			
		||||
 | 
			
		||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
 | 
			
		||||
special_vocab.add_to_gguf(gguf_writer)
 | 
			
		||||
 | 
			
		||||
# TENSORS
 | 
			
		||||
 | 
			
		||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | 
			
		||||
 | 
			
		||||
# params for qkv transform
 | 
			
		||||
n_head    = hparams["n_head"]
 | 
			
		||||
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
 | 
			
		||||
 | 
			
		||||
head_dim = hparams["n_embd"] // n_head
 | 
			
		||||
 | 
			
		||||
# tensor info
 | 
			
		||||
print("gguf: get tensor metadata")
 | 
			
		||||
 | 
			
		||||
if num_parts == 0:
 | 
			
		||||
    part_names = iter(("pytorch_model.bin",))
 | 
			
		||||
else:
 | 
			
		||||
    part_names = (
 | 
			
		||||
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
for part_name in part_names:
 | 
			
		||||
    if args.vocab_only:
 | 
			
		||||
        break
 | 
			
		||||
    print("gguf: loading model part '" + part_name + "'")
 | 
			
		||||
    model_part = torch.load(dir_model / part_name, map_location="cpu")
 | 
			
		||||
 | 
			
		||||
    for name in model_part.keys():
 | 
			
		||||
        data = model_part[name]
 | 
			
		||||
 | 
			
		||||
        old_dtype = data.dtype
 | 
			
		||||
 | 
			
		||||
        # convert any unsupported data types to float32
 | 
			
		||||
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
			
		||||
            data = data.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
        data = data.squeeze().numpy()
 | 
			
		||||
 | 
			
		||||
        # map tensor names
 | 
			
		||||
        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
			
		||||
        if new_name is None:
 | 
			
		||||
            print("Can not map tensor '" + name + "'")
 | 
			
		||||
            sys.exit()
 | 
			
		||||
 | 
			
		||||
        n_dims = len(data.shape)
 | 
			
		||||
        data_dtype = data.dtype
 | 
			
		||||
 | 
			
		||||
        # if f32 desired, convert any float16 to float32
 | 
			
		||||
        if ftype == 0 and data_dtype == np.float16:
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
			
		||||
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
			
		||||
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
			
		||||
            data = data.astype(np.float16)
 | 
			
		||||
 | 
			
		||||
        print(name, "=>", new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
			
		||||
 | 
			
		||||
        gguf_writer.add_tensor(new_name, data)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
print("gguf: write header")
 | 
			
		||||
gguf_writer.write_header_to_file()
 | 
			
		||||
print("gguf: write metadata")
 | 
			
		||||
gguf_writer.write_kv_data_to_file()
 | 
			
		||||
if not args.vocab_only:
 | 
			
		||||
    print("gguf: write tensors")
 | 
			
		||||
    gguf_writer.write_tensors_to_file()
 | 
			
		||||
 | 
			
		||||
gguf_writer.close()
 | 
			
		||||
 | 
			
		||||
print(f"gguf: model successfully exported to '{fname_out}'")
 | 
			
		||||
print("")
 | 
			
		||||
@@ -174,6 +174,16 @@ MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
 | 
			
		||||
        MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | 
			
		||||
    },
 | 
			
		||||
    MODEL_ARCH.STARCODER: {
 | 
			
		||||
        MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
 | 
			
		||||
        MODEL_TENSOR.POS_EMBD:      "position_embd",
 | 
			
		||||
        MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
 | 
			
		||||
        MODEL_TENSOR.OUTPUT:        "output",
 | 
			
		||||
        MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
 | 
			
		||||
        MODEL_TENSOR.ATTN_QKV:      "blk.{bid}.attn_qkv",
 | 
			
		||||
        MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
 | 
			
		||||
        MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
 | 
			
		||||
        MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | 
			
		||||
        MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_up",
 | 
			
		||||
    },
 | 
			
		||||
    MODEL_ARCH.GPT2: {
 | 
			
		||||
        # TODO
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user