mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	gpt2 : Add gpt2 architecture integration (#4555)
This commit is contained in:
		
							
								
								
									
										206
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										206
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -423,6 +423,15 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = | ||||
|         LLM_ARCH_GPT2, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" }, | ||||
|             { LLM_TENSOR_POS_EMBD,        "position_embd" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,          "output" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
| @@ -1256,6 +1265,10 @@ enum e_model { | ||||
|     MODEL_40B, | ||||
|     MODEL_65B, | ||||
|     MODEL_70B, | ||||
|     MODEL_SMALL, | ||||
|     MODEL_MEDIUM, | ||||
|     MODEL_LARGE, | ||||
|     MODEL_XL, | ||||
| }; | ||||
|  | ||||
| static const size_t kiB = 1024; | ||||
| @@ -2552,18 +2565,22 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { | ||||
|  | ||||
| static const char * llama_model_type_name(e_model type) { | ||||
|     switch (type) { | ||||
|         case MODEL_1B:  return "1B"; | ||||
|         case MODEL_3B:  return "3B"; | ||||
|         case MODEL_7B:  return "7B"; | ||||
|         case MODEL_8B:  return "8B"; | ||||
|         case MODEL_13B: return "13B"; | ||||
|         case MODEL_15B: return "15B"; | ||||
|         case MODEL_30B: return "30B"; | ||||
|         case MODEL_34B: return "34B"; | ||||
|         case MODEL_40B: return "40B"; | ||||
|         case MODEL_65B: return "65B"; | ||||
|         case MODEL_70B: return "70B"; | ||||
|         default:        return "?B"; | ||||
|         case MODEL_1B:     return "1B"; | ||||
|         case MODEL_3B:     return "3B"; | ||||
|         case MODEL_7B:     return "7B"; | ||||
|         case MODEL_8B:     return "8B"; | ||||
|         case MODEL_13B:    return "13B"; | ||||
|         case MODEL_15B:    return "15B"; | ||||
|         case MODEL_30B:    return "30B"; | ||||
|         case MODEL_34B:    return "34B"; | ||||
|         case MODEL_40B:    return "40B"; | ||||
|         case MODEL_65B:    return "65B"; | ||||
|         case MODEL_70B:    return "70B"; | ||||
|         case MODEL_SMALL:  return "0.1B"; | ||||
|         case MODEL_MEDIUM: return "0.4B"; | ||||
|         case MODEL_LARGE:  return "0.8B"; | ||||
|         case MODEL_XL:     return "1.5B"; | ||||
|         default:           return "?B"; | ||||
|     } | ||||
| } | ||||
|  | ||||
| @@ -2782,6 +2799,17 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                } | ||||
|             } break; | ||||
|         case LLM_ARCH_GPT2: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 12: model.type = e_model::MODEL_SMALL; break; | ||||
|                     case 24: model.type = e_model::MODEL_MEDIUM; break; | ||||
|                     case 36: model.type = e_model::MODEL_LARGE; break; | ||||
|                     case 48: model.type = e_model::MODEL_XL; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|  | ||||
|         default: (void)0; | ||||
|     } | ||||
| @@ -3710,6 +3738,60 @@ static bool llm_load_tensors( | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, backend_split); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_GPT2: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab},             GGML_BACKEND_CPU); | ||||
|                     model.pos_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"),   {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU); | ||||
|  | ||||
|                     // output | ||||
|                     { | ||||
|                         ggml_backend_type backend_norm; | ||||
|                         ggml_backend_type backend_output; | ||||
|  | ||||
|                         if (n_gpu_layers > int(n_layer)) { | ||||
|                             backend_norm   = llama_backend_offload; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
|                         } | ||||
|  | ||||
|                         model.output_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd},          backend_norm); | ||||
|                         model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd},          backend_norm); | ||||
|                         model.output        = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, backend_output); | ||||
|                     } | ||||
|  | ||||
|                     const uint32_t n_ff = hparams.n_ff; | ||||
|  | ||||
|                     const int i_gpu_start = n_layer - n_gpu_layers; | ||||
|  | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
|                         layer.attn_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, backend); | ||||
|                         layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd}, backend); | ||||
|  | ||||
|                         layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); | ||||
|                         layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa},         backend); | ||||
|  | ||||
|                         layer.wo   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd},   backend_split); | ||||
|                         layer.bo   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd},           backend); | ||||
|  | ||||
|                         layer.ffn_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); | ||||
|                         layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, backend); | ||||
|  | ||||
|                         layer.ffn_down   = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); | ||||
|                         layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd},       backend); | ||||
|  | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, backend_split); | ||||
|                         layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "bias", i),           {n_ff}, backend); | ||||
|                     } | ||||
|                 } break; | ||||
|             default: | ||||
|                 throw std::runtime_error("unknown architecture"); | ||||
|         } | ||||
| @@ -5754,6 +5836,102 @@ struct llm_build_context { | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_gpt2() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * pos; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); | ||||
|         cb(inpL, "inp_embd", -1); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); | ||||
|         cb(inp_pos, "inp_pos", -1); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); | ||||
|         cb(KQ_mask, "KQ_mask", -1); | ||||
|  | ||||
|         pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); | ||||
|         cb(pos, "pos_embd", -1); | ||||
|  | ||||
|         inpL = ggml_add(ctx0, inpL, pos); | ||||
|         cb(inpL, "inpL", -1); | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, | ||||
|                     model.layers[il].attn_norm_b, | ||||
|                     LLM_NORM, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); | ||||
|                 cb(cur, "wqkv", il); | ||||
|  | ||||
|                 cur = ggml_add(ctx0, cur, model.layers[il].bqkv); | ||||
|                 cb(cur, "bqkv", il); | ||||
|  | ||||
|                 struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); | ||||
|                 struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); | ||||
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); | ||||
|  | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|  | ||||
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); | ||||
|  | ||||
|                 llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); | ||||
|  | ||||
|                 cur = llm_build_kqv(ctx0, model, hparams, kv_self, | ||||
|                         model.layers[il].wo, model.layers[il].bo, | ||||
|                         Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|                 cb(cur, "kqv_out", il); | ||||
|             } | ||||
|  | ||||
|             // add the input | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // FF | ||||
|             { | ||||
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                         model.layers[il].ffn_norm, | ||||
|                         model.layers[il].ffn_norm_b, | ||||
|                         LLM_NORM, cb, il); | ||||
|                 cb(cur, "ffn_norm", il); | ||||
|  | ||||
|                 cur = llm_build_ffn(ctx0, cur, | ||||
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b, | ||||
|                         NULL,                      NULL, | ||||
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b, | ||||
|                         NULL, | ||||
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); | ||||
|                 cb(cur, "ffn_out", il); | ||||
|             } | ||||
|  | ||||
|             inpL = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(inpL, "l_out", il); | ||||
|         } | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                 model.output_norm, | ||||
|                 model.output_norm_b, | ||||
|                 LLM_NORM, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| // | ||||
| @@ -6269,6 +6447,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm.build_plamo(); | ||||
|             } break; | ||||
|         case LLM_ARCH_GPT2: | ||||
|             { | ||||
|                 result = llm.build_gpt2(); | ||||
|             } break; | ||||
|         default: | ||||
|             GGML_ASSERT(false); | ||||
|     } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 manikbhandari
					manikbhandari