llama: use FA + max. GPU layers by default (#15434)

* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
This commit is contained in:
Johannes Gäßler
2025-08-30 16:32:10 +02:00
committed by GitHub
parent 38ad381f9f
commit e81b8e4b7f
19 changed files with 235 additions and 72 deletions

View File

@@ -41,7 +41,6 @@ llama_context::llama_context(
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.embeddings = params.embeddings;
cparams.offload_kqv = params.offload_kqv;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.pooling_type = params.pooling_type;
cparams.warmup = false;
@@ -86,6 +85,8 @@ llama_context::llama_context(
cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
}
cparams.flash_attn = params.flash_attn_type != LLAMA_FLASH_ATTN_TYPE_DISABLED;
// with causal attention, the batch size is limited by the context size
cparams.n_batch = cparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
@@ -119,7 +120,7 @@ llama_context::llama_context(
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn);
LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
LLAMA_LOG_INFO("%s: flash_attn = %s\n", __func__, llama_flash_attn_type_name(params.flash_attn_type));
LLAMA_LOG_INFO("%s: kv_unified = %s\n", __func__, cparams.kv_unified ? "true" : "false");
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
@@ -269,7 +270,7 @@ llama_context::llama_context(
}
}
// reserve worst-case graph
// resolve automatic Flash Attention use and reserve worst-case graph
if (!hparams.vocab_only) {
const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
@@ -300,6 +301,48 @@ llama_context::llama_context(
throw std::runtime_error("failed to allocate compute pp buffers");
}
if (params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_AUTO) {
ggml_backend_sched_alloc_graph(sched.get(), gf);
const size_t prefix_len = strlen(LLAMA_TENSOR_NAME_FATTN) + 1;
bool fa_device_mismatch = false;
for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
ggml_tensor * n = ggml_graph_node(gf, i);
if (n->op != GGML_OP_FLASH_ATTN_EXT) {
continue;
}
ggml_backend_dev_t device_fa = ggml_backend_get_device(
ggml_backend_sched_get_tensor_backend(sched.get(), n));
// TODO: instead of the tensor names, use a map to keep track of which (FA) tensors belong to which layer
GGML_ASSERT(strncmp(n->name, LLAMA_TENSOR_NAME_FATTN "-", prefix_len) == 0);
const int il = std::stoi(n->name + prefix_len);
ggml_backend_dev_t device_kv = model.dev_layer(il);
if (device_fa != device_kv) {
LLAMA_LOG_WARN("%s: layer %d is assigned to device %s but the Flash Attention tensor "
"is assigned to device %s (usually due to missing support)\n",
__func__, il, ggml_backend_dev_name(device_kv), ggml_backend_dev_name(device_fa));
// FIXME: fa_device_mismatch logic is wrong for --no-kv-offload, but this is broken anyways
fa_device_mismatch = true;
break;
}
}
if (fa_device_mismatch) {
cparams.flash_attn = false;
LLAMA_LOG_WARN("%s: Flash Attention was auto, set to disabled\n", __func__);
if (ggml_is_quantized(params.type_v)) {
throw std::runtime_error("quantized V cache was requested, but this requires Flash Attention");
}
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
}
} else {
cparams.flash_attn = true;
LLAMA_LOG_INFO("%s: Flash Attention was auto, set to enabled\n", __func__);
}
}
n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
n_nodes_pp = ggml_graph_n_nodes(gf);
}
@@ -2208,6 +2251,7 @@ llama_context_params llama_context_default_params() {
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
/*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
/*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
/*.flash_attn_type =*/ LLAMA_FLASH_ATTN_TYPE_AUTO,
/*.rope_freq_base =*/ 0.0f,
/*.rope_freq_scale =*/ 0.0f,
/*.yarn_ext_factor =*/ -1.0f,
@@ -2224,7 +2268,6 @@ llama_context_params llama_context_default_params() {
/*.abort_callback_data =*/ nullptr,
/*.embeddings =*/ false,
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
/*.op_offload =*/ true,
/*.swa_full =*/ true,
@@ -2252,12 +2295,30 @@ llama_context * llama_init_from_model(
return nullptr;
}
if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
if (params.flash_attn_type != LLAMA_FLASH_ATTN_TYPE_DISABLED && model->arch == LLM_ARCH_GROK) {
LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
params.flash_attn = false;
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
}
if (ggml_is_quantized(params.type_v) && !params.flash_attn) {
if (params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_AUTO && ggml_is_quantized(params.type_k)) {
const uint32_t blck_size = ggml_blck_size(params.type_k);
if (model->hparams.n_embd_head_k % blck_size != 0) {
LLAMA_LOG_ERROR("%s: K cache type %s with block size %u does not divide n_embd_head_k=%u\n",
__func__, ggml_type_name(params.type_k), blck_size, model->hparams.n_embd_head_k);
return nullptr;
}
}
if (params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_AUTO && ggml_is_quantized(params.type_v)) {
const uint32_t blck_size = ggml_blck_size(params.type_v);
if (model->hparams.n_embd_head_v % blck_size != 0) {
LLAMA_LOG_ERROR("%s: V cache type %s with block size %u does not divide n_embd_head_k=%u\n",
__func__, ggml_type_name(params.type_v), blck_size, model->hparams.n_embd_head_v);
return nullptr;
}
}
if (ggml_is_quantized(params.type_v) && params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_DISABLED) {
LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
return nullptr;
}