opencl: add swiglu_oai and add_id (#15121)

* opencl: add `swiglu-oai`

* opencl: add `add_id`

* opencl: add missing `add_id.cl`
This commit is contained in:
lhez
2025-08-07 04:12:17 +09:00
committed by GitHub
parent 3db4da56a5
commit e725a1a982
4 changed files with 194 additions and 2 deletions

View File

@@ -345,6 +345,7 @@ struct ggml_backend_opencl_context {
cl_command_queue queue;
cl_program program_add;
cl_program program_add_id;
cl_program program_clamp;
cl_program program_cpy;
cl_program program_cvt;
@@ -404,6 +405,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
cl_kernel kernel_add_id;
cl_kernel kernel_scale;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
@@ -412,7 +414,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_relu;
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
cl_kernel kernel_clamp;
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_geglu_erf, kernel_geglu_quick,
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
cl_kernel kernel_norm;
cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
@@ -681,6 +683,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// add_id
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "add_id.cl.h"
};
#else
const std::string kernel_src = read_file("add_id.cl");
#endif
backend_ctx->program_add_id =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
GGML_LOG_CONT(".");
}
// clamp
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -787,6 +805,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
@@ -2467,6 +2486,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return (op->src[0]->type == op->src[1]->type) &&
(op->src[0]->type == op->type) &&
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
@@ -2488,6 +2509,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
@@ -3824,6 +3846,75 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
}
}
static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const ggml_tensor * src2 = dst->src[2];
GGML_ASSERT(src2);
GGML_ASSERT(src2->extra);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src2->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous_rows(src0));
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb21 = src2->nb[1];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel = backend_ctx->kernel_add_id;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
size_t local_work_size[] = { (size_t)nth, 1, 1 };
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@@ -7005,6 +7096,9 @@ static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const
kernel = backend_ctx->kernel_swiglu_f16;
}
break;
case GGML_GLU_OP_SWIGLU_OAI:
kernel = backend_ctx->kernel_swiglu_oai;
break;
case GGML_GLU_OP_GEGLU_ERF:
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_geglu_erf;
@@ -7040,7 +7134,10 @@ static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const
const cl_ulong nb1 = dst->nb[1];
const int swp = ((const int32_t *) dst->op_params)[1];
const int swp = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
@@ -7057,6 +7154,11 @@ static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
}
const size_t nrows = ggml_nrows(src0);
size_t nth = 512;
size_t global_work_size[] = {nrows*nth, 1, 1};
@@ -7113,6 +7215,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_add;
break;
case GGML_OP_ADD_ID:
if (!any_on_device) {
return false;
}
func = ggml_cl_add_id;
break;
case GGML_OP_MUL:
if (!any_on_device) {
return false;