mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
model : add EXAONE 4.0 support (#14630)
This commit is contained in:
@@ -843,6 +843,9 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
|
||||
# ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
|
||||
res = "lfm2"
|
||||
if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
|
||||
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
|
||||
res = "exaone4"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -6780,6 +6783,75 @@ class ExaoneModel(TextModel):
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||
|
||||
|
||||
@ModelBase.register("Exaone4ForCausalLM")
|
||||
class Exaone4Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.EXAONE4
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if hparams.get("sliding_window") is not None:
|
||||
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
|
||||
if "layer_types" in hparams:
|
||||
self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
|
||||
elif "sliding_window_pattern" in hparams:
|
||||
sliding_window_pattern = []
|
||||
if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
|
||||
for i in range(hparams["num_hidden_layers"]):
|
||||
sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
|
||||
if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
|
||||
for i in range(hparams["num_hidden_layers"]):
|
||||
sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
|
||||
if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
|
||||
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
|
||||
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10_000.0)
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 16.0)
|
||||
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||||
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||||
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
|
||||
rope_factors = []
|
||||
for freq in freqs:
|
||||
wavelen = 2 * math.pi / freq
|
||||
if wavelen < high_freq_wavelen:
|
||||
rope_factors.append(1)
|
||||
elif wavelen > low_freq_wavelen:
|
||||
rope_factors.append(factor)
|
||||
else:
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||
|
||||
|
||||
@ModelBase.register("GraniteForCausalLM")
|
||||
class GraniteModel(LlamaModel):
|
||||
"""Conversion for IBM's GraniteForCausalLM"""
|
||||
|
||||
Reference in New Issue
Block a user