model : add EXAONE 4.0 support (#14630)

This commit is contained in:
lgai-exaone
2025-07-18 17:45:49 +09:00
committed by GitHub
parent f9a31eea06
commit e0cb5c5cb8
9 changed files with 333 additions and 0 deletions

View File

@@ -843,6 +843,9 @@ class TextModel(ModelBase):
if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
# ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
res = "lfm2"
if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
res = "exaone4"
if res is None:
logger.warning("\n")
@@ -6780,6 +6783,75 @@ class ExaoneModel(TextModel):
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("Exaone4ForCausalLM")
class Exaone4Model(TextModel):
model_arch = gguf.MODEL_ARCH.EXAONE4
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if hparams.get("sliding_window") is not None:
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
if "layer_types" in hparams:
self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
elif "sliding_window_pattern" in hparams:
sliding_window_pattern = []
if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
for i in range(hparams["num_hidden_layers"]):
sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
for i in range(hparams["num_hidden_layers"]):
sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10_000.0)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 16.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
rope_factors = []
for freq in freqs:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
rope_factors.append(1)
elif wavelen > low_freq_wavelen:
rope_factors.append(factor)
else:
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("GraniteForCausalLM")
class GraniteModel(LlamaModel):
"""Conversion for IBM's GraniteForCausalLM"""