ggml-zdnn: inital backend impl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: temp change z17 to arch15

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: fix build bugs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
This commit is contained in:
Aaron Teo
2025-07-18 19:59:24 +08:00
parent 01612b7409
commit e084821a3f
9 changed files with 1405 additions and 1 deletions

View File

@@ -0,0 +1,622 @@
#include "zdnn.h"
#include "ggml-zdnn.h"
#include "ggml-zdnn-impl.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include <csignal>
#include <unistd.h>
struct zdnn_extra {
zdnn_tensor_desc pre_tfm_desc;
zdnn_tensor_desc tfm_desc;
zdnn_ztensor ztensor;
struct zdnn_extra * extra; // for bias, etc.
};
struct ggml_backend_zdnn_context {
int n_threads = GGML_DEFAULT_N_THREADS;
};
inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return FP32;
case GGML_TYPE_F16:
return FP16;
case GGML_TYPE_BF16:
return BFLOAT;
case GGML_TYPE_I8:
return INT8;
case GGML_TYPE_I32:
return INT32;
case GGML_TYPE_Q8_0:
return INT8;
default:
GGML_ABORT("%s: fatal: unable to determine zTensor data type",
__func__);
break;
}
}
inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc,
zdnn_tensor_desc & tfm_desc,
zdnn_ztensor & ztensor,
const ggml_tensor * src,
const int64_t * ne,
const zdnn_data_layouts layout) {
zdnn_init_pre_transformed_desc(
layout,
ggml_zdnn_type_mapping(src->type),
&pre_tfm_desc,
ne[3], ne[2], ne[1], ne[0]
);
ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor));
}
inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor,
void * buffer) {
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer));
}
static void ggml_backend_zdnn_mul_mat(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type = src0->type;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
const ggml_tensor * weights = src0;
const ggml_tensor * inputs = src1;
ggml_tensor * output = dst;
zdnn_tensor_desc pre_tfm_desc_weights, tfm_desc_weights;
zdnn_tensor_desc pre_tfm_desc_inputs, tfm_desc_inputs;
zdnn_tensor_desc pre_tfm_desc_bias, tfm_desc_bias;
zdnn_tensor_desc pre_tfm_desc_output, tfm_desc_output;
zdnn_ztensor ztensor_weights, ztensor_inputs, ztensor_bias, ztensor_output;
const int64_t weights_rows = ne01;
const int64_t weights_cols = ne00;
const int64_t inputs_rows = ne11;
const int64_t inputs_cols = ne10;
assert(inputs_cols == weights_cols);
const int64_t output_rows = dst->ne[1];
const int64_t output_cols = dst->ne[0];
const int64_t inputs_dim [GGML_MAX_DIMS] = { 1, 1, inputs_cols, inputs_rows };
const int64_t weights_dim[GGML_MAX_DIMS] = { 1, 1, weights_cols, weights_rows };
const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols };
const int64_t output_dim [GGML_MAX_DIMS] = { 1, 1, output_cols, output_rows };
ggml_zdnn_create_tensor(pre_tfm_desc_inputs, tfm_desc_inputs, ztensor_inputs, src1, inputs_dim, ZDNN_2D);
ggml_zdnn_create_tensor(pre_tfm_desc_weights, tfm_desc_weights, ztensor_weights, src0, weights_dim, ZDNN_2D);
ggml_zdnn_create_tensor(pre_tfm_desc_bias, tfm_desc_bias, ztensor_bias, dst, bias_dim, ZDNN_1D);
ggml_zdnn_create_tensor(pre_tfm_desc_output, tfm_desc_output, ztensor_output, dst, output_dim, ZDNN_2D);
const size_t weights_size = ggml_element_size(src0);
void * bias_data = (void *)calloc(output_cols, sizeof(ggml_element_size(dst)));
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor_weights, weights->data));
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor_inputs, inputs->data));
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor_bias, bias_data));
ZDNN_CHECK(zdnn_matmul_transpose_op(&ztensor_inputs, &ztensor_weights, &ztensor_bias,
false, true, MATMUL_OP_ADDITION, &ztensor_output));
ZDNN_CHECK(zdnn_transform_origtensor(&ztensor_output, output->data));
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ztensor_weights));
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ztensor_inputs));
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ztensor_bias));
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ztensor_output));
free(bias_data);
}
static void ggml_backend_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_UNUSED(ctx);
bool use_mul_mat_vec =
(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q =
ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
bool use_mul_mat_q =
ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
// debug helpers
// GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec);
// GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q);
// GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q);
// GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
// GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
// GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
// GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1)
&& src1->ne[2] * src1->ne[3] > 1) {
// general KQ + KQV multi-batch
GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__);
// ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst);
} else if (use_mul_mat_vec) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec_q) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1);
} else if (use_mul_mat_q) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1);
} else {
// GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__);
ggml_backend_zdnn_mul_mat(ctx, src0, src1, dst);
}
}
static bool ggml_backend_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) {
switch (dst->op) {
case GGML_OP_MUL_MAT:
ggml_backend_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst);
break;
default:
return false;
}
return true;
}
static const char * ggml_backend_zdnn_get_name(ggml_backend_t backend) {
return GGML_ZDNN_NAME;
GGML_UNUSED(backend);
}
static void ggml_backend_zdnn_free(ggml_backend_t backend) {
ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context;
delete ctx;
delete backend;
}
static ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node)
|| node->op == GGML_OP_NONE
|| node->op == GGML_OP_RESHAPE
|| node->op == GGML_OP_VIEW
|| node->op == GGML_OP_PERMUTE
|| node->op == GGML_OP_TRANSPOSE) {
continue;
}
bool ok = ggml_backend_zdnn_compute_forward(ctx, node);
if (!ok) {
GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
__func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
}
return GGML_STATUS_SUCCESS;
GGML_UNUSED(backend);
}
static ggml_backend_i ggml_backend_zdnn_i = {
/* .get_name = */ ggml_backend_zdnn_get_name,
/* .free = */ ggml_backend_zdnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t ggml_backend_zdnn_guid(void) {
// guid spells out IBM-NNPA-ACCELER
static ggml_guid guid = { 0x49, 0x42, 0x4D, 0x2D, 0x4E, 0x4E, 0x50, 0x41,
0x2D, 0x41, 0x43, 0x43, 0x45, 0x4C, 0x45, 0x52 };
return &guid;
}
ggml_backend_t ggml_backend_zdnn_init(void) {
ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context;
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_zdnn_guid(),
/* .iface = */ ggml_backend_zdnn_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0),
/* .context = */ ctx,
};
return backend;
}
bool ggml_backend_is_zdnn(ggml_backend_t backend) {
return backend != NULL &&
ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());
}
void ggml_backend_zdnn_set_n_threads(ggml_backend_t backend_zdnn, int n_threads) {
GGML_ASSERT(ggml_backend_is_zdnn(backend_zdnn));
ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend_zdnn->context;
ctx->n_threads = n_threads;
}
static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
return GGML_ZDNN_NAME;
}
static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
return GGML_ZDNN_NAME;
GGML_UNUSED(dev);
}
static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
*free = 0;
*total = 0;
GGML_UNUSED(dev);
}
static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
GGML_UNUSED(dev);
}
static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_zdnn_device_get_name(dev);
props->description = ggml_backend_zdnn_device_get_description(dev);
props->type = ggml_backend_zdnn_device_get_type(dev);
ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_zdnn_device_init_backend(ggml_backend_dev_t dev, const char * params) {
return ggml_backend_zdnn_init();
GGML_UNUSED(dev);
GGML_UNUSED(params);
}
static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
uintptr_t data = (uintptr_t)buffer->context;
if (data % 256 != 0) {
data = GGML_PAD(data, 256);
}
return (void *)data;
}
static ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
zdnn_extra * extra = (zdnn_extra *)malloc(sizeof(zdnn_extra));
const int64_t dims[GGML_MAX_DIMS] = { 1, 1, tensor->ne[0], tensor->ne[1] };
zdnn_init_pre_transformed_desc(
ZDNN_2D,
ggml_zdnn_type_mapping(tensor->type),
&extra->pre_tfm_desc,
dims[3], dims[2], dims[1], dims[0]
);
ZDNN_CHECK(zdnn_generate_transformed_desc(&extra->pre_tfm_desc, &extra->tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&extra->pre_tfm_desc, &extra->tfm_desc, &extra->ztensor));
if (tensor->op == GGML_OP_MUL_MAT) {
zdnn_extra * bias_extra = (zdnn_extra *)malloc(sizeof(zdnn_extra));
const int64_t bias_dims[GGML_MAX_DIMS] = { 1, 1, 1, tensor->ne[0] };
zdnn_init_pre_transformed_desc(
ZDNN_1D,
ggml_zdnn_type_mapping(tensor->type),
&bias_extra->pre_tfm_desc,
bias_dims[3], bias_dims[2], bias_dims[1], bias_dims[0]
);
ZDNN_CHECK(zdnn_generate_transformed_desc(&bias_extra->pre_tfm_desc, &bias_extra->tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&bias_extra->pre_tfm_desc, &bias_extra->tfm_desc, &bias_extra->ztensor));
extra->extra = bias_extra;
}
tensor->extra = extra;
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_aligned_free(buffer->context, buffer->size);
}
static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
memset(buffer->context, value, buffer->size);
}
static const ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
/* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer, // zdnn buffers are not owned by the backend
/* .get_base = */ ggml_backend_zdnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_zdnn_buffer_clear,
/* .reset = */ NULL,
};
static const ggml_backend_buffer_i ggml_backend_zdnn_buffer_from_ptr_i = {
/* .free_buffer = */ NULL, // ptr is not owned by the buffer
/* .get_base = */ ggml_backend_zdnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_zdnn_buffer_clear,
/* .reset = */ NULL,
};
static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_ZDNN_NAME;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * data = ggml_aligned_malloc(size);
if (data == NULL) {
GGML_LOG_ERROR("%s: failed to allocate %zu bytes\n", __func__, size);
return NULL;
}
return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, data, size);
}
static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 256;
GGML_UNUSED(buft);
}
static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
static ggml_backend_buffer_type ggml_backend_zdnn_buffer_type = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ NULL,
/* .context = */ NULL,
};
return &ggml_backend_zdnn_buffer_type;
}
static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_ZDNN_NAME "_Mapped";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
static ggml_backend_buffer_type ggml_backend_zdnn_buffer_type = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ NULL,
/* .context = */ NULL,
};
return &ggml_backend_zdnn_buffer_type;
}
static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
GGML_ASSERT((uintptr_t)ptr % 256 == 0 && "buffer pointer must be aligned");
return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_from_ptr_i, ptr, size);
}
static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const ggml_tensor * src0 = op->src[0];
const ggml_tensor * src1 = op->src[1];
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_MUL_MAT:
{
const ggml_tensor * src0 = op->src[0];
const ggml_tensor * src1 = op->src[1];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = op->ne[0];
const int64_t ne1 = op->ne[1];
const int64_t max_batch = zdnn_get_nnpa_max_dim_idx_size();
return ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
src1->type == GGML_TYPE_F32 &&
(ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch) &&
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
}
default:
return false;
}
GGML_UNUSED(dev);
}
static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name;
GGML_UNUSED(dev);
}
static ggml_backend_device_i ggml_backend_zdnn_device_i = {
/* .get_name = */ ggml_backend_zdnn_device_get_name,
/* .get_description = */ ggml_backend_zdnn_device_get_description,
/* .get_memory = */ ggml_backend_zdnn_device_get_memory,
/* .get_type = */ ggml_backend_zdnn_device_get_type,
/* .get_props = */ ggml_backend_zdnn_device_get_props,
/* .init_backend = */ ggml_backend_zdnn_device_init_backend,
/* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_host_ptr,
/* .supports_op = */ ggml_backend_zdnn_device_supports_op,
/* .supports_buft = */ ggml_backend_zdnn_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
//
// backend registry
//
static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
return GGML_ZDNN_NAME;
GGML_UNUSED(reg);
}
static size_t ggml_backend_zdnn_reg_get_device_count(ggml_backend_reg_t reg) {
return 1;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_zdnn_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
static ggml_backend_device ggml_backend_zdnn_device = {
/* .iface = */ ggml_backend_zdnn_device_i,
/* .reg = */ reg,
/* .context = */ nullptr,
};
return &ggml_backend_zdnn_device;
GGML_UNUSED(reg);
GGML_UNUSED(index);
}
static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
return (void *)ggml_backend_zdnn_set_n_threads;
}
return NULL;
GGML_UNUSED(reg);
}
static const ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
/* .get_name = */ ggml_backend_zdnn_reg_get_name,
/* .get_device_count = */ ggml_backend_zdnn_reg_get_device_count,
/* .get_device = */ ggml_backend_zdnn_reg_get_device,
/* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
};
ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
static ggml_backend_reg ggml_backend_zdnn_reg = {
/* .api_version = */ GGML_ZDNN_VERSION,
/* .iface = */ ggml_backend_zdnn_reg_i,
/* .context = */ NULL,
};
return &ggml_backend_zdnn_reg;
}
GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)