mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	OpenCL: Fix duplication of layers in VRAM and RAM, add GPU mul kernel (#1653)
* Use events instead of clFinish, where possible * OpenCL: Don't load gpu layers into RAM, add mul_f32 kernel * Reduce queueing overhead for contiguous tensors by using single mul kernel call * Adapt to #1612 cl_mem malloc changes * Reduce code duplication between cuda and opencl branches * Improve implementation
This commit is contained in:
		
							
								
								
									
										184
									
								
								ggml-opencl.cpp
									
									
									
									
									
								
							
							
						
						
									
										184
									
								
								ggml-opencl.cpp
									
									
									
									
									
								
							| @@ -3,6 +3,7 @@ | |||||||
| #include <array> | #include <array> | ||||||
| #include <atomic> | #include <atomic> | ||||||
| #include <sstream> | #include <sstream> | ||||||
|  | #include <vector> | ||||||
|  |  | ||||||
| #define CL_TARGET_OPENCL_VERSION 110 | #define CL_TARGET_OPENCL_VERSION 110 | ||||||
| #include <clblast.h> | #include <clblast.h> | ||||||
| @@ -197,6 +198,18 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float | |||||||
| } | } | ||||||
| ); | ); | ||||||
|  |  | ||||||
|  | std::string mul_template = MULTILINE_QUOTE( | ||||||
|  | __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) { | ||||||
|  |     const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); | ||||||
|  |  | ||||||
|  |     if (i >= get_global_size(0)) { | ||||||
|  |         return; | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky]; | ||||||
|  | } | ||||||
|  | ); | ||||||
|  |  | ||||||
| #define CL_CHECK(err)                                               \ | #define CL_CHECK(err)                                               \ | ||||||
|     do {                                                            \ |     do {                                                            \ | ||||||
|         cl_int err_ = (err);                                        \ |         cl_int err_ = (err);                                        \ | ||||||
| @@ -239,6 +252,13 @@ std::array<std::string, 30> dequant_mul_mat_vec_str_values = { | |||||||
|     "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" |     "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" | ||||||
| }; | }; | ||||||
|  |  | ||||||
|  | std::array<std::string, 2> mul_str_keys = { | ||||||
|  |     "KERNEL_NAME", "TYPE" | ||||||
|  | }; | ||||||
|  | std::array<std::string, 2> mul_str_values = { | ||||||
|  |     "mul_f32", "float" | ||||||
|  | }; | ||||||
|  |  | ||||||
| std::string& replace(std::string& s, const std::string& from, const std::string& to) { | std::string& replace(std::string& s, const std::string& from, const std::string& to) { | ||||||
|     size_t pos = 0; |     size_t pos = 0; | ||||||
|     while ((pos = s.find(from, pos)) != std::string::npos) { |     while ((pos = s.find(from, pos)) != std::string::npos) { | ||||||
| @@ -261,6 +281,13 @@ std::string generate_kernels() { | |||||||
|         src << dequant_kernel << '\n'; |         src << dequant_kernel << '\n'; | ||||||
|         src << dmmv_kernel << '\n'; |         src << dmmv_kernel << '\n'; | ||||||
|     } |     } | ||||||
|  |     for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) { | ||||||
|  |         std::string mul_kernel = mul_template; | ||||||
|  |         for (size_t j = 0; j < mul_str_keys.size(); j++) { | ||||||
|  |             replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]); | ||||||
|  |         } | ||||||
|  |         src << mul_kernel << '\n'; | ||||||
|  |     } | ||||||
|     return src.str(); |     return src.str(); | ||||||
| } | } | ||||||
|  |  | ||||||
| @@ -272,6 +299,7 @@ static cl_program program; | |||||||
| static cl_kernel convert_row_f16_cl; | static cl_kernel convert_row_f16_cl; | ||||||
| static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; | static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; | ||||||
| static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; | static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; | ||||||
|  | static cl_kernel mul_f32_cl; | ||||||
| static bool fp16_support; | static bool fp16_support; | ||||||
|  |  | ||||||
| static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { | static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { | ||||||
| @@ -508,6 +536,9 @@ void ggml_cl_init(void) { | |||||||
|     CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); |     CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); | ||||||
|     CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); |     CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); | ||||||
|     CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); |     CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); | ||||||
|  |  | ||||||
|  |     // mul kernel | ||||||
|  |     CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err)); | ||||||
| } | } | ||||||
|  |  | ||||||
| static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { | static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { | ||||||
| @@ -644,6 +675,98 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o | |||||||
|     return err; |     return err; | ||||||
| } | } | ||||||
|  |  | ||||||
|  | static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | ||||||
|  |     GGML_ASSERT(src1->backend == GGML_BACKEND_CL); | ||||||
|  |     const int64_t ne00 = src0->ne[0]; | ||||||
|  |     const int64_t ne01 = src0->ne[1]; | ||||||
|  |     const int64_t ne02 = src0->ne[2]; | ||||||
|  |     const int64_t ne03 = src0->ne[2]; | ||||||
|  |     const int64_t ne0 = ne00 * ne01 * ne02 * ne03; | ||||||
|  |     const int64_t ne10 = src1->ne[0]; | ||||||
|  |     const int64_t ne11 = src1->ne[1]; | ||||||
|  |     const int64_t ne12 = src1->ne[2]; | ||||||
|  |     const int64_t ne13 = src1->ne[3]; | ||||||
|  |     const int64_t nb10 = src1->nb[0]; | ||||||
|  |     const int nb2  = dst->nb[2]; | ||||||
|  |     const int nb3  = dst->nb[3]; | ||||||
|  |     size_t x_size; | ||||||
|  |     size_t d_size; | ||||||
|  |  | ||||||
|  |     cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size, CL_MEM_READ_ONLY); // src0 | ||||||
|  |     cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted. | ||||||
|  |     cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size, CL_MEM_WRITE_ONLY); // dst | ||||||
|  |  | ||||||
|  |     for (int64_t i03 = 0; i03 < ne03; i03++) { | ||||||
|  |         for (int64_t i02 = 0; i02 < ne02; i02++) { | ||||||
|  |             const int i0 = i03*ne02 + i02; | ||||||
|  |  | ||||||
|  |             cl_event ev; | ||||||
|  |  | ||||||
|  |             // copy src0 to device | ||||||
|  |             CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev)); | ||||||
|  |  | ||||||
|  |             if (nb10 == sizeof(float)) { | ||||||
|  |                 // Contiguous, avoid overhead from queueing many kernel runs | ||||||
|  |                 const int64_t i13 = i03%ne13; | ||||||
|  |                 const int64_t i12 = i02%ne12; | ||||||
|  |                 const int i1 = i13*ne12*ne11 + i12*ne11; | ||||||
|  |  | ||||||
|  |                 cl_int x_offset = 0; | ||||||
|  |                 cl_int y_offset = i1*ne10; | ||||||
|  |                 cl_int d_offset = 0; | ||||||
|  |  | ||||||
|  |                 size_t global = ne00 * ne01; | ||||||
|  |                 cl_int ky = ne10; | ||||||
|  |                 CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); | ||||||
|  |                 CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset)); | ||||||
|  |                 CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y)); | ||||||
|  |                 CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset)); | ||||||
|  |                 CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D)); | ||||||
|  |                 CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset)); | ||||||
|  |                 CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky)); | ||||||
|  |                 CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); | ||||||
|  |             } else { | ||||||
|  |                 for (int64_t i01 = 0; i01 < ne01; i01++) { | ||||||
|  |                     const int64_t i13 = i03%ne13; | ||||||
|  |                     const int64_t i12 = i02%ne12; | ||||||
|  |                     const int64_t i11 = i01%ne11; | ||||||
|  |                     const int i1 = i13*ne12*ne11 + i12*ne11 + i11; | ||||||
|  |  | ||||||
|  |                     cl_int x_offset = i01*ne00; | ||||||
|  |                     cl_int y_offset = i1*ne10; | ||||||
|  |                     cl_int d_offset = i01*ne00; | ||||||
|  |  | ||||||
|  |                     // compute | ||||||
|  |                     size_t global = ne00; | ||||||
|  |                     cl_int ky = ne10; | ||||||
|  |                     CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); | ||||||
|  |                     CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset)); | ||||||
|  |                     CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y)); | ||||||
|  |                     CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset)); | ||||||
|  |                     CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D)); | ||||||
|  |                     CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset)); | ||||||
|  |                     CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky)); | ||||||
|  |                     CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |  | ||||||
|  |             CL_CHECK(clReleaseEvent(ev)); | ||||||
|  |             CL_CHECK(clFinish(queue)); | ||||||
|  |  | ||||||
|  |             // copy dst to host | ||||||
|  |             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | ||||||
|  |             CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |     ggml_cl_pool_free(d_X, x_size); | ||||||
|  |     ggml_cl_pool_free(d_D, d_size); | ||||||
|  | } | ||||||
|  |  | ||||||
|  | void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { | ||||||
|  |     GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); | ||||||
|  |     ggml_cl_mul_f32(src0, src1, dst); | ||||||
|  | } | ||||||
|  |  | ||||||
| static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | ||||||
|     const int64_t ne00 = src0->ne[0]; |     const int64_t ne00 = src0->ne[0]; | ||||||
|     const int64_t ne01 = src0->ne[1]; |     const int64_t ne01 = src0->ne[1]; | ||||||
| @@ -860,13 +983,15 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * | |||||||
|     cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); |     cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); | ||||||
|     GGML_ASSERT(to_fp32_cl != nullptr); |     GGML_ASSERT(to_fp32_cl != nullptr); | ||||||
|  |  | ||||||
|  |     size_t ev_idx = 0; | ||||||
|  |     std::vector<cl_event> events; | ||||||
|  |  | ||||||
|     for (int64_t i03 = 0; i03 < ne03; i03++) { |     for (int64_t i03 = 0; i03 < ne03; i03++) { | ||||||
|         for (int64_t i02 = 0; i02 < ne02; i02++) { |         for (int64_t i02 = 0; i02 < ne02; i02++) { | ||||||
|             cl_event ev_sgemm; |  | ||||||
|  |  | ||||||
|             // copy src0 to device if necessary |             // copy src0 to device if necessary | ||||||
|             if (src0->backend == GGML_BACKEND_CPU) { |             if (src0->backend == GGML_BACKEND_CPU) { | ||||||
|                 CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL)); |                 events.emplace_back(); | ||||||
|  |                 CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); | ||||||
|             } else if (src0->backend == GGML_BACKEND_CL) { |             } else if (src0->backend == GGML_BACKEND_CL) { | ||||||
|                 d_Q = (cl_mem) src0->data; |                 d_Q = (cl_mem) src0->data; | ||||||
|             } else { |             } else { | ||||||
| @@ -874,30 +999,32 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * | |||||||
|             } |             } | ||||||
|             if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel |             if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel | ||||||
|                 // copy src1 to device |                 // copy src1 to device | ||||||
|                 CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); |                 events.emplace_back(); | ||||||
|  |                 CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++)); | ||||||
|  |  | ||||||
|                 // compute |                 // compute | ||||||
|                 const size_t global = ne01 * CL_DMMV_BLOCK_SIZE; |                 const size_t global = ne01 * CL_DMMV_BLOCK_SIZE; | ||||||
|                 const size_t local = CL_DMMV_BLOCK_SIZE; |                 const size_t local = CL_DMMV_BLOCK_SIZE; | ||||||
|                 const cl_int ncols = ne00; |                 const cl_int ncols = ne00; | ||||||
|  |                 events.emplace_back(); | ||||||
|                 CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); |                 CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); | ||||||
|                 CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); |                 CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); | ||||||
|                 CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); |                 CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); | ||||||
|                 CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); |                 CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); | ||||||
|                 CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); |                 CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); | ||||||
|                 CL_CHECK(clFinish(queue)); |                 CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++)); | ||||||
|                 CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm)); |  | ||||||
|             } else { // general dequantization kernel + CLBlast matrix matrix multiplication |             } else { // general dequantization kernel + CLBlast matrix matrix multiplication | ||||||
|                 // convert src0 to fp32 on device |                 // convert src0 to fp32 on device | ||||||
|                 const size_t global = x_ne; |                 const size_t global = x_ne; | ||||||
|                 CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); |                 CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); | ||||||
|                 CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); |                 CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); | ||||||
|                 CL_CHECK(clFinish(queue)); |                 CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); | ||||||
|                 CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL)); |  | ||||||
|  |  | ||||||
|                 // copy src1 to device |                 // copy src1 to device | ||||||
|                 CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); |                 CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); | ||||||
|  |  | ||||||
|  |                 events.emplace_back(); | ||||||
|  |  | ||||||
|                 // wait for conversion |                 // wait for conversion | ||||||
|                 CL_CHECK(clFinish(queue)); |                 CL_CHECK(clFinish(queue)); | ||||||
|  |  | ||||||
| @@ -910,7 +1037,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * | |||||||
|                                                            d_Y, 0, ne10, |                                                            d_Y, 0, ne10, | ||||||
|                                                            beta, |                                                            beta, | ||||||
|                                                            d_D, 0, ne01, |                                                            d_D, 0, ne01, | ||||||
|                                                            &queue, &ev_sgemm); |                                                            &queue, events.data() + ev_idx++); | ||||||
|  |  | ||||||
|                 if (status != clblast::StatusCode::kSuccess) { |                 if (status != clblast::StatusCode::kSuccess) { | ||||||
|                     GGML_ASSERT(false); |                     GGML_ASSERT(false); | ||||||
| @@ -919,8 +1046,13 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * | |||||||
|  |  | ||||||
|             // copy dst to host |             // copy dst to host | ||||||
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); |             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | ||||||
|             CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); |             CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL)); | ||||||
|             clReleaseEvent(ev_sgemm); |             for (auto *event : events) { | ||||||
|  |                 clReleaseEvent(event); | ||||||
|  |             } | ||||||
|  |  | ||||||
|  |             ev_idx = 0; | ||||||
|  |             events.clear(); | ||||||
|         } |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
| @@ -1026,3 +1158,33 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) { | |||||||
|     tensor->data = dst; |     tensor->data = dst; | ||||||
|     tensor->backend = GGML_BACKEND_CL; |     tensor->backend = GGML_BACKEND_CL; | ||||||
| } | } | ||||||
|  |  | ||||||
|  | void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { | ||||||
|  |     cl_int err; | ||||||
|  |     FILE * fp = fopen(fname, "rb"); | ||||||
|  |  | ||||||
|  |     const size_t size = ggml_nbytes(tensor); | ||||||
|  |  | ||||||
|  |     cl_mem dst; | ||||||
|  |     CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err)); | ||||||
|  |     void * buf_host = malloc(size); | ||||||
|  |  | ||||||
|  | #ifdef _WIN32 | ||||||
|  |     int ret = _fseeki64(fp, (__int64) offset, SEEK_SET); | ||||||
|  | #else | ||||||
|  |     int ret = fseek(fp, (long) offset, SEEK_SET); | ||||||
|  | #endif | ||||||
|  |     GGML_ASSERT(ret == 0); // same | ||||||
|  |  | ||||||
|  |     size_t ret2 = fread(buf_host, size, 1, fp); | ||||||
|  |     if (ret2 != 1) { | ||||||
|  |         fprintf(stderr, "unexpectedly reached end of file"); | ||||||
|  |         exit(1); | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr); | ||||||
|  |  | ||||||
|  |     tensor->data = dst; | ||||||
|  |     free(buf_host); | ||||||
|  |     fclose(fp); | ||||||
|  | } | ||||||
|   | |||||||
| @@ -8,6 +8,7 @@ extern "C" { | |||||||
|  |  | ||||||
| void ggml_cl_init(void); | void ggml_cl_init(void); | ||||||
|  |  | ||||||
|  | void   ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | ||||||
| bool   ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | bool   ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | ||||||
| size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | ||||||
| void   ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); | void   ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); | ||||||
| @@ -16,6 +17,7 @@ void * ggml_cl_host_malloc(size_t size); | |||||||
| void   ggml_cl_host_free(void * ptr); | void   ggml_cl_host_free(void * ptr); | ||||||
|  |  | ||||||
| void ggml_cl_transform_tensor(struct ggml_tensor * tensor); | void ggml_cl_transform_tensor(struct ggml_tensor * tensor); | ||||||
|  | void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset); | ||||||
|  |  | ||||||
| #ifdef  __cplusplus | #ifdef  __cplusplus | ||||||
| } | } | ||||||
|   | |||||||
							
								
								
									
										7
									
								
								ggml.c
									
									
									
									
									
								
							
							
						
						
									
										7
									
								
								ggml.c
									
									
									
									
									
								
							| @@ -8134,6 +8134,13 @@ static void ggml_compute_forward_mul_f32( | |||||||
|         } |         } | ||||||
|         return; |         return; | ||||||
|     } |     } | ||||||
|  | #elif defined(GGML_USE_CLBLAST) | ||||||
|  |     if (src1->backend == GGML_BACKEND_CL) { | ||||||
|  |         if (ith == 0) { | ||||||
|  |             ggml_cl_mul(src0, src1, dst); | ||||||
|  |         } | ||||||
|  |         return; | ||||||
|  |     } | ||||||
| #endif | #endif | ||||||
|  |  | ||||||
|     const int64_t nr = ggml_nrows(src0); |     const int64_t nr = ggml_nrows(src0); | ||||||
|   | |||||||
							
								
								
									
										57
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										57
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -1010,8 +1010,12 @@ static void llama_model_load_internal( | |||||||
|         } |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
| #ifdef GGML_USE_CUBLAS | #if defined(GGML_USE_CUBLAS) | ||||||
| #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA | #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA | ||||||
|  |     fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__); | ||||||
|  | #elif defined(GGML_USE_CLBLAST) | ||||||
|  | #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CL | ||||||
|  |     fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__); | ||||||
| #else | #else | ||||||
| #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU | #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU | ||||||
| #endif | #endif | ||||||
| @@ -1063,7 +1067,7 @@ static void llama_model_load_internal( | |||||||
|             layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", {  n_ff,   n_embd}, backend); |             layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", {  n_ff,   n_embd}, backend); | ||||||
|             layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd,   n_ff},   backend); |             layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd,   n_ff},   backend); | ||||||
|  |  | ||||||
|             if (backend == GGML_BACKEND_CUDA) { |             if (backend == LLAMA_BACKEND_OFFLOAD) { | ||||||
|                 vram_total += |                 vram_total += | ||||||
|                     ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk)             + |                     ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk)             + | ||||||
|                     ggml_nbytes(layer.wv)             + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + |                     ggml_nbytes(layer.wv)             + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + | ||||||
| @@ -1093,15 +1097,15 @@ static void llama_model_load_internal( | |||||||
|         fprintf(stderr, "%s: mem required  = %7.2f MB (+ %7.2f MB per state)\n", __func__, |         fprintf(stderr, "%s: mem required  = %7.2f MB (+ %7.2f MB per state)\n", __func__, | ||||||
|                 mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); |                 mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); | ||||||
|  |  | ||||||
| #ifdef GGML_USE_CUBLAS |  | ||||||
|         const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); |         const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); | ||||||
|  |  | ||||||
|         fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu); | #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) | ||||||
|  |         fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu); | ||||||
|         if (n_gpu_layers > (int) hparams.n_layer) { |         if (n_gpu_layers > (int) hparams.n_layer) { | ||||||
|             fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__); |             fprintf(stderr, "%s: offloading output layer to GPU\n", __func__); | ||||||
|         } |         } | ||||||
|         fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); |         fprintf(stderr, "%s: total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); | ||||||
| #elif !defined(GGML_USE_CLBLAST) | #else | ||||||
|         (void) n_gpu_layers; |         (void) n_gpu_layers; | ||||||
| #endif | #endif | ||||||
|     } |     } | ||||||
| @@ -1113,7 +1117,7 @@ static void llama_model_load_internal( | |||||||
|  |  | ||||||
|     ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); |     ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); | ||||||
|  |  | ||||||
| #ifdef GGML_USE_CUBLAS | #if defined(GGML_USE_CUBLAS) | ||||||
|     { |     { | ||||||
|         size_t done_size = 0; |         size_t done_size = 0; | ||||||
|         size_t data_size = 0; |         size_t data_size = 0; | ||||||
| @@ -1136,29 +1140,24 @@ static void llama_model_load_internal( | |||||||
|     } |     } | ||||||
| #elif defined(GGML_USE_CLBLAST) | #elif defined(GGML_USE_CLBLAST) | ||||||
|     { |     { | ||||||
|         const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); |         size_t done_size = 0; | ||||||
|  |         size_t data_size = 0; | ||||||
|         fprintf(stderr, "ggml_opencl: offloading %d layers to GPU\n", n_gpu); |         for (llama_load_tensor & lt : ml->tensors_map.tensors) { | ||||||
|  |             data_size += lt.size; | ||||||
|         size_t vram_total = 0; |             if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { | ||||||
|  |                 done_size += lt.size; | ||||||
|         for (int i = 0; i < n_gpu; ++i) { |             } | ||||||
|             const auto & layer = model.layers[i]; |  | ||||||
|  |  | ||||||
|             ggml_cl_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq); |  | ||||||
|             ggml_cl_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk); |  | ||||||
|             ggml_cl_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv); |  | ||||||
|             ggml_cl_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo); |  | ||||||
|             ggml_cl_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1); |  | ||||||
|             ggml_cl_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2); |  | ||||||
|             ggml_cl_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3); |  | ||||||
|         } |         } | ||||||
|         if (n_gpu_layers > (int) hparams.n_layer) { |         for (llama_load_tensor & lt : ml->tensors_map.tensors) { | ||||||
|             fprintf(stderr, "ggml_opencl: offloading output layer to GPU\n"); |             if (lt.ggml_tensor->backend != GGML_BACKEND_CL) { | ||||||
|             ggml_cl_transform_tensor(model.output); vram_total += ggml_nbytes(model.output); |                 continue; | ||||||
|  |             } | ||||||
|  |             if (progress_callback) { | ||||||
|  |                 progress_callback((float) done_size / data_size, progress_callback_user_data); | ||||||
|  |             } | ||||||
|  |             ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off); | ||||||
|  |             done_size += lt.size; | ||||||
|         } |         } | ||||||
|  |  | ||||||
|         fprintf(stderr, "ggml_opencl: total VRAM used: %zu MB\n", vram_total / 1024 / 1024); |  | ||||||
|     } |     } | ||||||
| #endif | #endif | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 0cc4m
					0cc4m