mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	llama : move refact in correct place + optimize graph input
This commit is contained in:
		
							
								
								
									
										584
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										584
									
								
								llama.cpp
									
									
									
									
									
								
							@@ -3166,10 +3166,10 @@ static struct ggml_cgraph * llm_build_llama(
 | 
			
		||||
    ggml_set_name(KQ_pos, "KQ_pos");
 | 
			
		||||
 | 
			
		||||
    // shift the entire K-cache if needed
 | 
			
		||||
    if (do_rope_shift) {
 | 
			
		||||
    struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
 | 
			
		||||
    ggml_set_name(K_shift, "K_shift");
 | 
			
		||||
 | 
			
		||||
    if (do_rope_shift) {
 | 
			
		||||
        for (int il = 0; il < n_layer; ++il) {
 | 
			
		||||
            struct ggml_tensor * tmp =
 | 
			
		||||
                    ggml_rope_custom_inplace(ctx0,
 | 
			
		||||
@@ -3440,10 +3440,10 @@ static struct ggml_cgraph * llm_build_baichaun(
 | 
			
		||||
    ggml_set_name(KQ_pos, "KQ_pos");
 | 
			
		||||
 | 
			
		||||
    // shift the entire K-cache if needed
 | 
			
		||||
    if (do_rope_shift) {
 | 
			
		||||
    struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
 | 
			
		||||
    ggml_set_name(K_shift, "K_shift");
 | 
			
		||||
 | 
			
		||||
    if (do_rope_shift) {
 | 
			
		||||
        for (int il = 0; il < n_layer; ++il) {
 | 
			
		||||
            struct ggml_tensor * tmp =
 | 
			
		||||
                    ggml_rope_custom_inplace(ctx0,
 | 
			
		||||
@@ -3658,247 +3658,6 @@ static struct ggml_cgraph * llm_build_baichaun(
 | 
			
		||||
    return gf;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static struct ggml_cgraph * llm_build_refact(
 | 
			
		||||
         llama_context & lctx,
 | 
			
		||||
     const llama_batch & batch,
 | 
			
		||||
                  bool   worst_case) {
 | 
			
		||||
    const auto & model   = lctx.model;
 | 
			
		||||
    const auto & hparams = model.hparams;
 | 
			
		||||
    const auto & cparams = lctx.cparams;
 | 
			
		||||
 | 
			
		||||
    const auto & kv_self = lctx.kv_self;
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(!!kv_self.ctx);
 | 
			
		||||
 | 
			
		||||
    const int64_t n_embd      = hparams.n_embd;
 | 
			
		||||
    const int64_t n_layer     = hparams.n_layer;
 | 
			
		||||
    const int64_t n_ctx       = cparams.n_ctx;
 | 
			
		||||
    const int64_t n_head      = hparams.n_head;
 | 
			
		||||
    const int64_t n_head_kv   = hparams.n_head_kv;
 | 
			
		||||
    const int64_t n_embd_head = hparams.n_embd_head();
 | 
			
		||||
    const int64_t n_embd_gqa  = hparams.n_embd_gqa();
 | 
			
		||||
 | 
			
		||||
    const float norm_rms_eps = hparams.f_norm_rms_eps;
 | 
			
		||||
 | 
			
		||||
    const int32_t n_tokens = batch.n_tokens;
 | 
			
		||||
    const int32_t n_kv     = worst_case ? n_ctx            : kv_self.n;
 | 
			
		||||
    const int32_t kv_head  = worst_case ? n_ctx - n_tokens : kv_self.head;
 | 
			
		||||
 | 
			
		||||
    // printf("n_kv = %d\n", n_kv);
 | 
			
		||||
 | 
			
		||||
    auto & buf_compute = lctx.buf_compute;
 | 
			
		||||
 | 
			
		||||
    struct ggml_init_params params = {
 | 
			
		||||
        /*.mem_size   =*/ buf_compute.size,
 | 
			
		||||
        /*.mem_buffer =*/ buf_compute.data,
 | 
			
		||||
        /*.no_alloc   =*/ true,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    struct ggml_context * ctx0 = ggml_init(params);
 | 
			
		||||
 | 
			
		||||
    ggml_cgraph * gf = ggml_new_graph(ctx0);
 | 
			
		||||
 | 
			
		||||
    struct ggml_tensor * cur;
 | 
			
		||||
    struct ggml_tensor * inpL;
 | 
			
		||||
 | 
			
		||||
    if (batch.token) {
 | 
			
		||||
        struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
 | 
			
		||||
        ggml_set_name(inp_tokens, "inp_tokens");
 | 
			
		||||
 | 
			
		||||
        inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
 | 
			
		||||
    } else {
 | 
			
		||||
#ifdef GGML_USE_MPI
 | 
			
		||||
        GGML_ASSERT(false && "not implemented");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
 | 
			
		||||
    }
 | 
			
		||||
    ggml_set_name(inpL, "inp_embd");
 | 
			
		||||
 | 
			
		||||
    // KQ_scale
 | 
			
		||||
    struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
 | 
			
		||||
    ggml_set_name(KQ_scale, "KQ_scale");
 | 
			
		||||
 | 
			
		||||
    // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | 
			
		||||
    struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
 | 
			
		||||
    ggml_set_name(KQ_mask, "KQ_mask");
 | 
			
		||||
 | 
			
		||||
    for (int il = 0; il < n_layer; ++il) {
 | 
			
		||||
        struct ggml_tensor * inpSA = inpL;
 | 
			
		||||
 | 
			
		||||
        // norm
 | 
			
		||||
        {
 | 
			
		||||
            cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
 | 
			
		||||
            ggml_set_name(cur, "rms_norm_0");
 | 
			
		||||
 | 
			
		||||
            // cur = cur*attn_norm(broadcasted)
 | 
			
		||||
            cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
 | 
			
		||||
            ggml_set_name(cur, "attn_norm_0");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // self-attention
 | 
			
		||||
        {
 | 
			
		||||
            // compute Q and K
 | 
			
		||||
            struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | 
			
		||||
            ggml_set_name(tmpk, "tmpk");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | 
			
		||||
            ggml_set_name(tmpq, "tmpq");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
 | 
			
		||||
            ggml_set_name(Kcur, "Kcur");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens);
 | 
			
		||||
            ggml_set_name(Qcur, "Qcur");
 | 
			
		||||
 | 
			
		||||
            // store key and value to memory
 | 
			
		||||
            {
 | 
			
		||||
                // compute the transposed [n_tokens, n_embd] V matrix
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | 
			
		||||
                ggml_set_name(tmpv, "tmpv");
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
 | 
			
		||||
                ggml_set_name(Vcur, "Vcur");
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
 | 
			
		||||
                ggml_set_name(k, "k");
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
 | 
			
		||||
                        (   n_ctx)*ggml_element_size(kv_self.v),
 | 
			
		||||
                        (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
 | 
			
		||||
                ggml_set_name(v, "v");
 | 
			
		||||
 | 
			
		||||
                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
 | 
			
		||||
                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
 | 
			
		||||
            ggml_set_name(Q, "Q");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * K =
 | 
			
		||||
                ggml_view_3d(ctx0, kv_self.k,
 | 
			
		||||
                        n_embd_head, n_kv, n_head_kv,
 | 
			
		||||
                        ggml_element_size(kv_self.k)*n_embd_gqa,
 | 
			
		||||
                        ggml_element_size(kv_self.k)*n_embd_head,
 | 
			
		||||
                        ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
 | 
			
		||||
            ggml_set_name(K, "K");
 | 
			
		||||
 | 
			
		||||
            // K * Q
 | 
			
		||||
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | 
			
		||||
            ggml_set_name(KQ, "KQ");
 | 
			
		||||
 | 
			
		||||
            // KQ_scaled = KQ / sqrt(n_embd_head)
 | 
			
		||||
            // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
 | 
			
		||||
            struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
 | 
			
		||||
            ggml_set_name(KQ_scaled, "KQ_scaled");
 | 
			
		||||
 | 
			
		||||
            // KQ_masked = mask_past(KQ_scaled)
 | 
			
		||||
            struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
 | 
			
		||||
            ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
 | 
			
		||||
            ggml_set_name(KQ_masked, "KQ_masked");
 | 
			
		||||
 | 
			
		||||
            // KQ = soft_max(KQ_masked)
 | 
			
		||||
            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | 
			
		||||
            ggml_set_name(KQ_soft_max, "KQ_soft_max");
 | 
			
		||||
 | 
			
		||||
            // split cached V into n_head heads
 | 
			
		||||
            struct ggml_tensor * V =
 | 
			
		||||
                ggml_view_3d(ctx0, kv_self.v,
 | 
			
		||||
                        n_kv, n_embd_head, n_head_kv,
 | 
			
		||||
                        ggml_element_size(kv_self.v)*n_ctx,
 | 
			
		||||
                        ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
 | 
			
		||||
                        ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
 | 
			
		||||
            ggml_set_name(V, "V");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | 
			
		||||
            ggml_set_name(KQV, "KQV");
 | 
			
		||||
 | 
			
		||||
            // KQV_merged = KQV.permute(0, 2, 1, 3)
 | 
			
		||||
            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | 
			
		||||
            ggml_set_name(KQV_merged, "KQV_merged");
 | 
			
		||||
 | 
			
		||||
            // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
 | 
			
		||||
            cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
 | 
			
		||||
            ggml_set_name(cur, "KQV_merged_contiguous");
 | 
			
		||||
 | 
			
		||||
            // projection (no bias)
 | 
			
		||||
            cur = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].wo,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(cur, "result_wo");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | 
			
		||||
        ggml_set_name(inpFF, "inpFF");
 | 
			
		||||
 | 
			
		||||
        // feed-forward network
 | 
			
		||||
        {
 | 
			
		||||
            // norm
 | 
			
		||||
            {
 | 
			
		||||
                cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
 | 
			
		||||
                ggml_set_name(cur, "rms_norm_1");
 | 
			
		||||
 | 
			
		||||
                // cur = cur*ffn_norm(broadcasted)
 | 
			
		||||
                cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
 | 
			
		||||
                ggml_set_name(cur, "ffn_norm");
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].w3,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(tmp, "result_w3");
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].w1,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(cur, "result_w1");
 | 
			
		||||
 | 
			
		||||
            // SILU activation
 | 
			
		||||
            cur = ggml_silu(ctx0, cur);
 | 
			
		||||
            ggml_set_name(cur, "silu");
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul(ctx0, cur, tmp);
 | 
			
		||||
            ggml_set_name(cur, "silu_x_result_w3");
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].w2,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(cur, "result_w2");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        cur = ggml_add(ctx0, cur, inpFF);
 | 
			
		||||
        ggml_set_name(cur, "inpFF_+_result_w2");
 | 
			
		||||
 | 
			
		||||
        // input for next layer
 | 
			
		||||
        inpL = cur;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    cur = inpL;
 | 
			
		||||
 | 
			
		||||
    // norm
 | 
			
		||||
    {
 | 
			
		||||
        cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
 | 
			
		||||
        ggml_set_name(cur, "rms_norm_2");
 | 
			
		||||
 | 
			
		||||
        // cur = cur*norm(broadcasted)
 | 
			
		||||
        cur = ggml_mul(ctx0, cur, model.output_norm);
 | 
			
		||||
        ggml_set_name(cur, "result_norm");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // lm_head
 | 
			
		||||
    cur = ggml_mul_mat(ctx0, model.output, cur);
 | 
			
		||||
    ggml_set_name(cur, "result_output");
 | 
			
		||||
 | 
			
		||||
    ggml_build_forward_expand(gf, cur);
 | 
			
		||||
 | 
			
		||||
    ggml_free(ctx0);
 | 
			
		||||
 | 
			
		||||
    return gf;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static struct ggml_cgraph * llm_build_falcon(
 | 
			
		||||
         llama_context & lctx,
 | 
			
		||||
     const llama_batch & batch,
 | 
			
		||||
@@ -3976,10 +3735,10 @@ static struct ggml_cgraph * llm_build_falcon(
 | 
			
		||||
    ggml_set_name(KQ_pos, "KQ_pos");
 | 
			
		||||
 | 
			
		||||
    // shift the entire K-cache if needed
 | 
			
		||||
    if (do_rope_shift) {
 | 
			
		||||
    struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
 | 
			
		||||
    ggml_set_name(K_shift, "K_shift");
 | 
			
		||||
 | 
			
		||||
    if (do_rope_shift) {
 | 
			
		||||
        for (int il = 0; il < n_layer; ++il) {
 | 
			
		||||
            struct ggml_tensor * tmp =
 | 
			
		||||
                    ggml_rope_custom_inplace(ctx0,
 | 
			
		||||
@@ -4774,6 +4533,247 @@ static struct ggml_cgraph * llm_build_persimmon(
 | 
			
		||||
    return gf;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static struct ggml_cgraph * llm_build_refact(
 | 
			
		||||
         llama_context & lctx,
 | 
			
		||||
     const llama_batch & batch,
 | 
			
		||||
                  bool   worst_case) {
 | 
			
		||||
    const auto & model   = lctx.model;
 | 
			
		||||
    const auto & hparams = model.hparams;
 | 
			
		||||
    const auto & cparams = lctx.cparams;
 | 
			
		||||
 | 
			
		||||
    const auto & kv_self = lctx.kv_self;
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(!!kv_self.ctx);
 | 
			
		||||
 | 
			
		||||
    const int64_t n_embd      = hparams.n_embd;
 | 
			
		||||
    const int64_t n_layer     = hparams.n_layer;
 | 
			
		||||
    const int64_t n_ctx       = cparams.n_ctx;
 | 
			
		||||
    const int64_t n_head      = hparams.n_head;
 | 
			
		||||
    const int64_t n_head_kv   = hparams.n_head_kv;
 | 
			
		||||
    const int64_t n_embd_head = hparams.n_embd_head();
 | 
			
		||||
    const int64_t n_embd_gqa  = hparams.n_embd_gqa();
 | 
			
		||||
 | 
			
		||||
    const float norm_rms_eps = hparams.f_norm_rms_eps;
 | 
			
		||||
 | 
			
		||||
    const int32_t n_tokens = batch.n_tokens;
 | 
			
		||||
    const int32_t n_kv     = worst_case ? n_ctx            : kv_self.n;
 | 
			
		||||
    const int32_t kv_head  = worst_case ? n_ctx - n_tokens : kv_self.head;
 | 
			
		||||
 | 
			
		||||
    // printf("n_kv = %d\n", n_kv);
 | 
			
		||||
 | 
			
		||||
    auto & buf_compute = lctx.buf_compute;
 | 
			
		||||
 | 
			
		||||
    struct ggml_init_params params = {
 | 
			
		||||
        /*.mem_size   =*/ buf_compute.size,
 | 
			
		||||
        /*.mem_buffer =*/ buf_compute.data,
 | 
			
		||||
        /*.no_alloc   =*/ true,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    struct ggml_context * ctx0 = ggml_init(params);
 | 
			
		||||
 | 
			
		||||
    ggml_cgraph * gf = ggml_new_graph(ctx0);
 | 
			
		||||
 | 
			
		||||
    struct ggml_tensor * cur;
 | 
			
		||||
    struct ggml_tensor * inpL;
 | 
			
		||||
 | 
			
		||||
    if (batch.token) {
 | 
			
		||||
        struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
 | 
			
		||||
        ggml_set_name(inp_tokens, "inp_tokens");
 | 
			
		||||
 | 
			
		||||
        inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
 | 
			
		||||
    } else {
 | 
			
		||||
#ifdef GGML_USE_MPI
 | 
			
		||||
        GGML_ASSERT(false && "not implemented");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
        inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
 | 
			
		||||
    }
 | 
			
		||||
    ggml_set_name(inpL, "inp_embd");
 | 
			
		||||
 | 
			
		||||
    // KQ_scale
 | 
			
		||||
    struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
 | 
			
		||||
    ggml_set_name(KQ_scale, "KQ_scale");
 | 
			
		||||
 | 
			
		||||
    // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | 
			
		||||
    struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
 | 
			
		||||
    ggml_set_name(KQ_mask, "KQ_mask");
 | 
			
		||||
 | 
			
		||||
    for (int il = 0; il < n_layer; ++il) {
 | 
			
		||||
        struct ggml_tensor * inpSA = inpL;
 | 
			
		||||
 | 
			
		||||
        // norm
 | 
			
		||||
        {
 | 
			
		||||
            cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
 | 
			
		||||
            ggml_set_name(cur, "rms_norm_0");
 | 
			
		||||
 | 
			
		||||
            // cur = cur*attn_norm(broadcasted)
 | 
			
		||||
            cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
 | 
			
		||||
            ggml_set_name(cur, "attn_norm_0");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // self-attention
 | 
			
		||||
        {
 | 
			
		||||
            // compute Q and K
 | 
			
		||||
            struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | 
			
		||||
            ggml_set_name(tmpk, "tmpk");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | 
			
		||||
            ggml_set_name(tmpq, "tmpq");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
 | 
			
		||||
            ggml_set_name(Kcur, "Kcur");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens);
 | 
			
		||||
            ggml_set_name(Qcur, "Qcur");
 | 
			
		||||
 | 
			
		||||
            // store key and value to memory
 | 
			
		||||
            {
 | 
			
		||||
                // compute the transposed [n_tokens, n_embd] V matrix
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | 
			
		||||
                ggml_set_name(tmpv, "tmpv");
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
 | 
			
		||||
                ggml_set_name(Vcur, "Vcur");
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
 | 
			
		||||
                ggml_set_name(k, "k");
 | 
			
		||||
 | 
			
		||||
                struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
 | 
			
		||||
                        (   n_ctx)*ggml_element_size(kv_self.v),
 | 
			
		||||
                        (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
 | 
			
		||||
                ggml_set_name(v, "v");
 | 
			
		||||
 | 
			
		||||
                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
 | 
			
		||||
                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
 | 
			
		||||
            ggml_set_name(Q, "Q");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * K =
 | 
			
		||||
                ggml_view_3d(ctx0, kv_self.k,
 | 
			
		||||
                        n_embd_head, n_kv, n_head_kv,
 | 
			
		||||
                        ggml_element_size(kv_self.k)*n_embd_gqa,
 | 
			
		||||
                        ggml_element_size(kv_self.k)*n_embd_head,
 | 
			
		||||
                        ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
 | 
			
		||||
            ggml_set_name(K, "K");
 | 
			
		||||
 | 
			
		||||
            // K * Q
 | 
			
		||||
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | 
			
		||||
            ggml_set_name(KQ, "KQ");
 | 
			
		||||
 | 
			
		||||
            // KQ_scaled = KQ / sqrt(n_embd_head)
 | 
			
		||||
            // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
 | 
			
		||||
            struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
 | 
			
		||||
            ggml_set_name(KQ_scaled, "KQ_scaled");
 | 
			
		||||
 | 
			
		||||
            // KQ_masked = mask_past(KQ_scaled)
 | 
			
		||||
            struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
 | 
			
		||||
            ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
 | 
			
		||||
            ggml_set_name(KQ_masked, "KQ_masked");
 | 
			
		||||
 | 
			
		||||
            // KQ = soft_max(KQ_masked)
 | 
			
		||||
            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | 
			
		||||
            ggml_set_name(KQ_soft_max, "KQ_soft_max");
 | 
			
		||||
 | 
			
		||||
            // split cached V into n_head heads
 | 
			
		||||
            struct ggml_tensor * V =
 | 
			
		||||
                ggml_view_3d(ctx0, kv_self.v,
 | 
			
		||||
                        n_kv, n_embd_head, n_head_kv,
 | 
			
		||||
                        ggml_element_size(kv_self.v)*n_ctx,
 | 
			
		||||
                        ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
 | 
			
		||||
                        ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
 | 
			
		||||
            ggml_set_name(V, "V");
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | 
			
		||||
            ggml_set_name(KQV, "KQV");
 | 
			
		||||
 | 
			
		||||
            // KQV_merged = KQV.permute(0, 2, 1, 3)
 | 
			
		||||
            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | 
			
		||||
            ggml_set_name(KQV_merged, "KQV_merged");
 | 
			
		||||
 | 
			
		||||
            // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
 | 
			
		||||
            cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
 | 
			
		||||
            ggml_set_name(cur, "KQV_merged_contiguous");
 | 
			
		||||
 | 
			
		||||
            // projection (no bias)
 | 
			
		||||
            cur = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].wo,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(cur, "result_wo");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | 
			
		||||
        ggml_set_name(inpFF, "inpFF");
 | 
			
		||||
 | 
			
		||||
        // feed-forward network
 | 
			
		||||
        {
 | 
			
		||||
            // norm
 | 
			
		||||
            {
 | 
			
		||||
                cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
 | 
			
		||||
                ggml_set_name(cur, "rms_norm_1");
 | 
			
		||||
 | 
			
		||||
                // cur = cur*ffn_norm(broadcasted)
 | 
			
		||||
                cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
 | 
			
		||||
                ggml_set_name(cur, "ffn_norm");
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].w3,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(tmp, "result_w3");
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].w1,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(cur, "result_w1");
 | 
			
		||||
 | 
			
		||||
            // SILU activation
 | 
			
		||||
            cur = ggml_silu(ctx0, cur);
 | 
			
		||||
            ggml_set_name(cur, "silu");
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul(ctx0, cur, tmp);
 | 
			
		||||
            ggml_set_name(cur, "silu_x_result_w3");
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul_mat(ctx0,
 | 
			
		||||
                    model.layers[il].w2,
 | 
			
		||||
                    cur);
 | 
			
		||||
            ggml_set_name(cur, "result_w2");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        cur = ggml_add(ctx0, cur, inpFF);
 | 
			
		||||
        ggml_set_name(cur, "inpFF_+_result_w2");
 | 
			
		||||
 | 
			
		||||
        // input for next layer
 | 
			
		||||
        inpL = cur;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    cur = inpL;
 | 
			
		||||
 | 
			
		||||
    // norm
 | 
			
		||||
    {
 | 
			
		||||
        cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
 | 
			
		||||
        ggml_set_name(cur, "rms_norm_2");
 | 
			
		||||
 | 
			
		||||
        // cur = cur*norm(broadcasted)
 | 
			
		||||
        cur = ggml_mul(ctx0, cur, model.output_norm);
 | 
			
		||||
        ggml_set_name(cur, "result_norm");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // lm_head
 | 
			
		||||
    cur = ggml_mul_mat(ctx0, model.output, cur);
 | 
			
		||||
    ggml_set_name(cur, "result_output");
 | 
			
		||||
 | 
			
		||||
    ggml_build_forward_expand(gf, cur);
 | 
			
		||||
 | 
			
		||||
    ggml_free(ctx0);
 | 
			
		||||
 | 
			
		||||
    return gf;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static struct ggml_cgraph * llm_build_bloom(
 | 
			
		||||
         llama_context & lctx,
 | 
			
		||||
     const llama_batch & batch,
 | 
			
		||||
@@ -5360,7 +5360,7 @@ static void llama_build_graph_input(
 | 
			
		||||
    // inp_tokens
 | 
			
		||||
    if (batch.token) {
 | 
			
		||||
        cur = ggml_graph_get_tensor(graph, "inp_tokens");
 | 
			
		||||
        GGML_ASSERT(cur != nullptr); // required
 | 
			
		||||
        GGML_ASSERT(cur != nullptr && "missing tensor 'inp_tokens'");
 | 
			
		||||
 | 
			
		||||
        ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
@@ -5374,7 +5374,7 @@ static void llama_build_graph_input(
 | 
			
		||||
    // inp_embd
 | 
			
		||||
    if (batch.embd) {
 | 
			
		||||
        cur = ggml_graph_get_tensor(graph, "inp_embd");
 | 
			
		||||
        GGML_ASSERT(cur != nullptr); // required
 | 
			
		||||
        GGML_ASSERT(cur != nullptr && "missing tensor 'inp_embd'");
 | 
			
		||||
 | 
			
		||||
        ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
@@ -5386,11 +5386,16 @@ static void llama_build_graph_input(
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // TODO: make the following required based on the ARCH
 | 
			
		||||
    switch (lctx.model.arch) {
 | 
			
		||||
        case LLM_ARCH_LLAMA:
 | 
			
		||||
        case LLM_ARCH_BAICHUAN:
 | 
			
		||||
        case LLM_ARCH_FALCON:
 | 
			
		||||
        case LLM_ARCH_PERSIMMON:
 | 
			
		||||
            {
 | 
			
		||||
                // KQ_pos
 | 
			
		||||
                cur = ggml_graph_get_tensor(graph, "KQ_pos");
 | 
			
		||||
                GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_pos'");
 | 
			
		||||
 | 
			
		||||
    // inp_pos
 | 
			
		||||
    cur = ggml_graph_get_tensor(graph, "inp_pos");
 | 
			
		||||
    if (cur) {
 | 
			
		||||
                ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
                if (!ggml_allocr_is_measure(lctx.alloc)) {
 | 
			
		||||
@@ -5402,22 +5407,63 @@ static void llama_build_graph_input(
 | 
			
		||||
                        data[i] = batch.pos[i];
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                // K_shift
 | 
			
		||||
                cur = ggml_graph_get_tensor(graph, "K_shift");
 | 
			
		||||
                //GGML_ASSERT(cur != nullptr && "missing tensor 'K_shift'");
 | 
			
		||||
                if (cur) {
 | 
			
		||||
                    ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
                    if (!ggml_allocr_is_measure(lctx.alloc)) {
 | 
			
		||||
                        const int64_t n_ctx = cur->ne[0];
 | 
			
		||||
 | 
			
		||||
                        int32_t * data = (int32_t *) cur->data;
 | 
			
		||||
 | 
			
		||||
                        for (int i = 0; i < n_ctx; ++i) {
 | 
			
		||||
                            data[i] = lctx.kv_self.cells[i].delta;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            } break;
 | 
			
		||||
        case LLM_ARCH_STARCODER:
 | 
			
		||||
            {
 | 
			
		||||
                // inp_pos
 | 
			
		||||
                cur = ggml_graph_get_tensor(graph, "inp_pos");
 | 
			
		||||
                GGML_ASSERT(cur != nullptr && "missing tensor 'inp_pos'");
 | 
			
		||||
 | 
			
		||||
                ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
                if (!ggml_allocr_is_measure(lctx.alloc)) {
 | 
			
		||||
                    const int64_t n_tokens = cur->ne[0];
 | 
			
		||||
 | 
			
		||||
                    int32_t * data = (int32_t *) cur->data;
 | 
			
		||||
 | 
			
		||||
                    for (int i = 0; i < n_tokens; ++i) {
 | 
			
		||||
                        data[i] = batch.pos[i];
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            } break;
 | 
			
		||||
        default:
 | 
			
		||||
            break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // common
 | 
			
		||||
    {
 | 
			
		||||
        // KQ_scale
 | 
			
		||||
        cur = ggml_graph_get_tensor(graph, "KQ_scale");
 | 
			
		||||
    if (cur) {
 | 
			
		||||
        GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_scale'");
 | 
			
		||||
 | 
			
		||||
        ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
        if (!ggml_allocr_is_measure(lctx.alloc)) {
 | 
			
		||||
            const int64_t n_embd_head = lctx.model.hparams.n_embd_head();
 | 
			
		||||
            ggml_set_f32(cur, 1.0f/sqrtf(float(n_embd_head)));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
        // KQ_mask
 | 
			
		||||
        cur = ggml_graph_get_tensor(graph, "KQ_mask");
 | 
			
		||||
    if (cur) {
 | 
			
		||||
        GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_mask'");
 | 
			
		||||
 | 
			
		||||
        ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
        if (!ggml_allocr_is_measure(lctx.alloc)) {
 | 
			
		||||
@@ -5441,38 +5487,6 @@ static void llama_build_graph_input(
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // KQ_pos
 | 
			
		||||
    cur = ggml_graph_get_tensor(graph, "KQ_pos");
 | 
			
		||||
    if (cur) {
 | 
			
		||||
        ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
        if (!ggml_allocr_is_measure(lctx.alloc)) {
 | 
			
		||||
            const int64_t n_tokens = cur->ne[0];
 | 
			
		||||
 | 
			
		||||
            int32_t * data = (int32_t *) cur->data;
 | 
			
		||||
 | 
			
		||||
            for (int i = 0; i < n_tokens; ++i) {
 | 
			
		||||
                data[i] = batch.pos[i];
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // K_shift
 | 
			
		||||
    cur = ggml_graph_get_tensor(graph, "K_shift");
 | 
			
		||||
    if (cur) {
 | 
			
		||||
        ggml_allocr_alloc(lctx.alloc, cur);
 | 
			
		||||
 | 
			
		||||
        if (!ggml_allocr_is_measure(lctx.alloc)) {
 | 
			
		||||
            const int64_t n_ctx = cur->ne[0];
 | 
			
		||||
 | 
			
		||||
            int32_t * data = (int32_t *) cur->data;
 | 
			
		||||
 | 
			
		||||
            for (int i = 0; i < n_ctx; ++i) {
 | 
			
		||||
                data[i] = lctx.kv_self.cells[i].delta;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    } while (0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static struct ggml_cgraph * llama_build_graph(
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user