Merge branch 'master' into compilade/parallel-convert

This commit is contained in:
Francis Couture-Harpin
2025-04-11 15:18:33 -04:00
60 changed files with 3700 additions and 1418 deletions

View File

@@ -65,6 +65,7 @@ class Model:
model_name: str | None
metadata_override: Path | None
dir_model_card: Path
remote_hf_model_id: str | None
# subclasses should define this!
model_arch: gguf.MODEL_ARCH
@@ -73,7 +74,8 @@ class Model:
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, thread_count: int = 2):
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
thread_count: int = 2):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
@@ -83,11 +85,24 @@ class Model:
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.lazy = not eager or (remote_hf_model_id is not None)
self.remote_hf_model_id = remote_hf_model_id
if remote_hf_model_id is not None:
self.is_safetensors = True
def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
self.tensor_names = set(name for name in remote_tensors.keys())
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
self.get_tensors = get_remote_tensors
else:
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
@@ -394,6 +409,10 @@ class Model:
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
# If we are using HF model id, set the metadata name to the model id
if self.remote_hf_model_id:
self.metadata.name = self.remote_hf_model_id
# Fallback to model directory name if metadata name is still missing
if self.metadata.name is None:
self.metadata.name = self.dir_model.name
@@ -718,6 +737,9 @@ class Model:
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if res is None:
logger.warning("\n")
@@ -1733,7 +1755,7 @@ class LlamaModel(Model):
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
assert low_freq_wavelen != high_freq_wavelen
# assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
rope_factors = []
for freq in freqs:
@@ -1789,10 +1811,6 @@ class Llama4Model(LlamaModel):
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
name = name.replace("feed_forward.", "mlp.") # a bit hacky for now
name = name.replace(".router.weight", ".gate.weight") # a bit hacky for now
# split the gate_up into gate and up
if "gate_up_proj" in name:
name_up = name.replace("gate_up_proj", "up_proj.weight")
@@ -2460,6 +2478,16 @@ class Qwen2MoeModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Qwen3ForCausalLM")
class Qwen3Model(Qwen2Model):
model_arch = gguf.MODEL_ARCH.QWEN3
@Model.register("Qwen3MoeForCausalLM")
class Qwen3MoeModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3MOE
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
@@ -4874,6 +4902,22 @@ class JaisModel(Model):
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
@Model.register("Glm4ForCausalLM")
class Glm4Model(Model):
model_arch = gguf.MODEL_ARCH.GLM4
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(Model):
model_arch = gguf.MODEL_ARCH.CHATGLM
@@ -5394,6 +5438,14 @@ class LazyTorchTensor(gguf.LazyBase):
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
dtype = cls._dtype_str_map[remote_tensor.dtype]
shape = remote_tensor.shape
meta = cls.meta_with_dtype_and_shape(dtype, shape)
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
@@ -5471,9 +5523,13 @@ def parse_args() -> argparse.Namespace:
"--print-supported-models", action="store_true",
help="Print the supported models"
)
parser.add_argument(
"--remote", action="store_true",
help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
)
parser.add_argument(
"-t", "--threads", type=int, default=2,
help="Number of threads to use when writing the tensors. Make sure you have enough RAM for at least THREADS of the biggest tensors in the model when setting this.",
help="Number of threads to use when writing the tensors. Make sure you have enough RAM for at least THREADS of the biggest tensors in the model when setting this. Defaults to 2.",
)
args = parser.parse_args()
@@ -5515,6 +5571,14 @@ def main() -> None:
dir_model = args.model
if args.remote:
from huggingface_hub import snapshot_download
local_dir = snapshot_download(
repo_id=str(dir_model),
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
dir_model = Path(local_dir)
logger.info(f"Downloaded config and tokenizer to {local_dir}")
if not dir_model.is_dir():
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
@@ -5536,6 +5600,9 @@ def main() -> None:
if args.outfile is not None:
fname_out = args.outfile
elif args.remote:
# if remote, use the model ID as the output file name
fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
else:
fname_out = dir_model
@@ -5546,7 +5613,6 @@ def main() -> None:
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_architecture = hparams["architectures"][0]
try:
model_class = Model.from_model_architecture(model_architecture)
except NotImplementedError:
@@ -5559,7 +5625,9 @@ def main() -> None:
metadata_override=args.metadata, model_name=args.model_name,
split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split, thread_count=args.threads)
small_first_shard=args.no_tensor_first_split,
remote_hf_model_id=str(args.model) if args.remote else None,
thread_count=args.threads)
if args.vocab_only:
logger.info("Exporting model vocab...")