mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	vulkan: multi-row k quants (#10846)
* multi row k quant shaders! * better row selection * more row choices * readjust row selection * rm_kq=2 by default
This commit is contained in:
		| @@ -1855,53 +1855,58 @@ static void ggml_vk_load_shaders(vk_device& device) { | |||||||
|  |  | ||||||
|     // mul mat vec |     // mul mat vec | ||||||
|  |  | ||||||
|     // AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled |     // the number of rows computed per shader depends on GPU model and quant | ||||||
|     uint32_t rm = 1; |     uint32_t rm_stdq = 1; | ||||||
|     if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL) |     uint32_t rm_kq = 2; | ||||||
|         rm = 2; |     if (device->vendor_id == VK_VENDOR_ID_AMD) { | ||||||
|  |         if (device->subgroup_min_size == 64 && device->subgroup_max_size == 64) { // GCN | ||||||
|  |             rm_stdq = 2; | ||||||
|  |             rm_kq = 4; | ||||||
|  |         } | ||||||
|  |     } else if (device->vendor_id == VK_VENDOR_ID_INTEL) | ||||||
|  |         rm_stdq = 2; | ||||||
|  |  | ||||||
|     // computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0. |  | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32",  mul_mat_vec_f32_f32_f32_len,  mul_mat_vec_f32_f32_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32",  mul_mat_vec_f32_f32_f32_len,  mul_mat_vec_f32_f32_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32",  mul_mat_vec_f16_f32_f32_len,  mul_mat_vec_f16_f32_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32",  mul_mat_vec_f16_f32_f32_len,  mul_mat_vec_f16_f32_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); | ||||||
|  |  | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32",  mul_mat_vec_f32_f16_f32_len,  mul_mat_vec_f32_f16_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32",  mul_mat_vec_f32_f16_f32_len,  mul_mat_vec_f32_f16_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32",  mul_mat_vec_f16_f16_f32_len,  mul_mat_vec_f16_f16_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32",  mul_mat_vec_f16_f16_f32_len,  mul_mat_vec_f16_f16_f32_data,  "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); | ||||||
|  |  | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32",  mul_mat_vec_id_f32_f32_len,  mul_mat_vec_id_f32_f32_data,  "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32",  mul_mat_vec_id_f32_f32_len,  mul_mat_vec_id_f32_f32_data,  "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32",  mul_mat_vec_id_f16_f32_len,  mul_mat_vec_id_f16_f32_data,  "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32",  mul_mat_vec_id_f16_f32_len,  mul_mat_vec_id_f16_f32_data,  "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); |     ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); | ||||||
|  |  | ||||||
|     // dequant shaders |     // dequant shaders | ||||||
|     ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16",   dequant_f32_len,  dequant_f32_data,  "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); |     ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16",   dequant_f32_len,  dequant_f32_data,  "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); | ||||||
|   | |||||||
| @@ -6,21 +6,15 @@ | |||||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||||
|  |  | ||||||
| layout (constant_id = 0) const uint BLOCK_SIZE = 32; | layout (constant_id = 0) const uint BLOCK_SIZE = 32; | ||||||
|  | layout (constant_id = 1) const uint NUM_ROWS = 1; | ||||||
|  |  | ||||||
| shared FLOAT_TYPE tmp[BLOCK_SIZE]; | shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; | ||||||
|  |  | ||||||
| void main() { |  | ||||||
|     const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; |  | ||||||
|  |  | ||||||
|     if (row >= p.stride_d) { |  | ||||||
|         return; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|  | void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { | ||||||
|     uint a_offset, b_offset, d_offset; |     uint a_offset, b_offset, d_offset; | ||||||
|     get_offsets(a_offset, b_offset, d_offset); |     get_offsets(a_offset, b_offset, d_offset); | ||||||
|  |  | ||||||
|     const uint num_blocks_per_row = p.ncols / QUANT_K; |     const uint num_blocks_per_row = p.ncols / QUANT_K; | ||||||
|     const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; |  | ||||||
|  |  | ||||||
|     // 16 threads are used to process each block |     // 16 threads are used to process each block | ||||||
|     const uint it_size = gl_WorkGroupSize.x/16; |     const uint it_size = gl_WorkGroupSize.x/16; | ||||||
| @@ -38,15 +32,15 @@ void main() { | |||||||
|     const uint s_offset = 8*v_im; |     const uint s_offset = 8*v_im; | ||||||
|     const uint y_offset = 128*v_im + l0; |     const uint y_offset = 128*v_im + l0; | ||||||
|  |  | ||||||
|     FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp |     FLOAT_TYPE temp[NUM_ROWS]; | ||||||
|  |  | ||||||
|  |     [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { | ||||||
|  |         temp[i] = FLOAT_TYPE(0); | ||||||
|  |     } | ||||||
|  |  | ||||||
|     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { |     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { | ||||||
|         const uint y_idx = i * QUANT_K + y_offset; |         const uint y_idx = i * QUANT_K + y_offset; | ||||||
|  |  | ||||||
|         f16vec2 d = data_a[ib0 + i].d; |  | ||||||
|         const FLOAT_TYPE dall = d.x; |  | ||||||
|         const FLOAT_TYPE dmin = d.y; |  | ||||||
|  |  | ||||||
|         B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; |         B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; | ||||||
|         B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; |         B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; | ||||||
|         B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; |         B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; | ||||||
| @@ -56,6 +50,12 @@ void main() { | |||||||
|         B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; |         B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; | ||||||
|         B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; |         B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; | ||||||
|  |  | ||||||
|  |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; | ||||||
|  |             f16vec2 d = data_a[ib0 + i].d; | ||||||
|  |             const FLOAT_TYPE dall = d.x; | ||||||
|  |             const FLOAT_TYPE dmin = d.y; | ||||||
|  |  | ||||||
|             uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; |             uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; | ||||||
|             uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; |             uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; | ||||||
|  |  | ||||||
| @@ -94,20 +94,40 @@ void main() { | |||||||
|                        fma(FLOAT_TYPE(b96[l]),  FLOAT_TYPE(s4_hi4[2]), |                        fma(FLOAT_TYPE(b96[l]),  FLOAT_TYPE(s4_hi4[2]), | ||||||
|                        fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); |                        fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); | ||||||
|             } |             } | ||||||
|         temp = fma(dall, sum1, fma(-dmin, sum2, temp)); |             temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n])); | ||||||
|  |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     tmp[gl_LocalInvocationID.x] = temp; |  | ||||||
|  |  | ||||||
|     // sum up partial sums and write back result |     // sum up partial sums and write back result | ||||||
|  |     [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |         tmpsh[n][tid] = temp[n]; | ||||||
|  |     } | ||||||
|     barrier(); |     barrier(); | ||||||
|     [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { |     [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { | ||||||
|         if (tid < s) { |         if (tid < s) { | ||||||
|             tmp[tid] += tmp[tid + s]; |             [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |                 tmpsh[n][tid] += tmpsh[n][tid + s]; | ||||||
|  |             } | ||||||
|         } |         } | ||||||
|         barrier(); |         barrier(); | ||||||
|     } |     } | ||||||
|     if (tid == 0) { |     if (tid == 0) { | ||||||
|         data_d[d_offset + row] = D_TYPE(tmp[0]); |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | void main() { | ||||||
|  |     const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); | ||||||
|  |  | ||||||
|  |     // do NUM_ROWS at a time, unless there aren't enough remaining rows | ||||||
|  |     if (first_row + NUM_ROWS <= p.stride_d) { | ||||||
|  |         compute_outputs(first_row, NUM_ROWS); | ||||||
|  |     } else { | ||||||
|  |         if (first_row >= p.stride_d) { | ||||||
|  |             return; | ||||||
|  |         } | ||||||
|  |         compute_outputs(first_row, p.stride_d - first_row); | ||||||
|     } |     } | ||||||
| } | } | ||||||
|   | |||||||
| @@ -6,21 +6,15 @@ | |||||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||||
|  |  | ||||||
| layout (constant_id = 0) const uint BLOCK_SIZE = 32; | layout (constant_id = 0) const uint BLOCK_SIZE = 32; | ||||||
|  | layout (constant_id = 1) const uint NUM_ROWS = 1; | ||||||
|  |  | ||||||
| shared FLOAT_TYPE tmp[BLOCK_SIZE]; | shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; | ||||||
|  |  | ||||||
| void main() { |  | ||||||
|     const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; |  | ||||||
|  |  | ||||||
|     if (row >= p.stride_d) { |  | ||||||
|         return; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|  | void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { | ||||||
|     uint a_offset, b_offset, d_offset; |     uint a_offset, b_offset, d_offset; | ||||||
|     get_offsets(a_offset, b_offset, d_offset); |     get_offsets(a_offset, b_offset, d_offset); | ||||||
|  |  | ||||||
|     const uint num_blocks_per_row = p.ncols / QUANT_K; |     const uint num_blocks_per_row = p.ncols / QUANT_K; | ||||||
|     const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; |  | ||||||
|  |  | ||||||
|     // 16 threads are used to process each block |     // 16 threads are used to process each block | ||||||
|     const uint it_size = gl_WorkGroupSize.x/16; |     const uint it_size = gl_WorkGroupSize.x/16; | ||||||
| @@ -39,15 +33,17 @@ void main() { | |||||||
|     const uint q_offset = 32*v_im + l0; |     const uint q_offset = 32*v_im + l0; | ||||||
|     const uint y_offset = 128*v_im + l0; |     const uint y_offset = 128*v_im + l0; | ||||||
|  |  | ||||||
|     FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp |     FLOAT_TYPE temp[NUM_ROWS]; | ||||||
|  |  | ||||||
|  |     [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { | ||||||
|  |         temp[i] = FLOAT_TYPE(0); | ||||||
|  |     } | ||||||
|  |  | ||||||
|     const uint s_shift = 4 * v_im; |     const uint s_shift = 4 * v_im; | ||||||
|  |  | ||||||
|     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { |     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { | ||||||
|         const uint y_idx = i * QUANT_K + y_offset; |         const uint y_idx = i * QUANT_K + y_offset; | ||||||
|  |  | ||||||
|         const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); |  | ||||||
|  |  | ||||||
|         B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; |         B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; | ||||||
|         B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; |         B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; | ||||||
|         B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; |         B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; | ||||||
| @@ -57,6 +53,10 @@ void main() { | |||||||
|         B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; |         B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; | ||||||
|         B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; |         B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; | ||||||
|  |  | ||||||
|  |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; | ||||||
|  |             const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); | ||||||
|  |  | ||||||
|             uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0]; |             uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0]; | ||||||
|             uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1]; |             uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1]; | ||||||
|             uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2]; |             uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2]; | ||||||
| @@ -81,20 +81,40 @@ void main() { | |||||||
|                       fma(FLOAT_TYPE(b80[l])  * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1]  >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), |                       fma(FLOAT_TYPE(b80[l])  * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1]  >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), | ||||||
|                       fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); |                       fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); | ||||||
|             } |             } | ||||||
|         temp = fma(d, sum, temp); |             temp[n] = fma(d, sum, temp[n]); | ||||||
|  |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     tmp[gl_LocalInvocationID.x] = temp; |  | ||||||
|  |  | ||||||
|     // sum up partial sums and write back result |     // sum up partial sums and write back result | ||||||
|  |     [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |         tmpsh[n][tid] = temp[n]; | ||||||
|  |     } | ||||||
|     barrier(); |     barrier(); | ||||||
|     [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { |     [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { | ||||||
|         if (tid < s) { |         if (tid < s) { | ||||||
|             tmp[tid] += tmp[tid + s]; |             [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |                 tmpsh[n][tid] += tmpsh[n][tid + s]; | ||||||
|  |             } | ||||||
|         } |         } | ||||||
|         barrier(); |         barrier(); | ||||||
|     } |     } | ||||||
|     if (tid == 0) { |     if (tid == 0) { | ||||||
|         data_d[d_offset + row] = D_TYPE(tmp[0]); |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | void main() { | ||||||
|  |     const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); | ||||||
|  |  | ||||||
|  |     // do NUM_ROWS at a time, unless there aren't enough remaining rows | ||||||
|  |     if (first_row + NUM_ROWS <= p.stride_d) { | ||||||
|  |         compute_outputs(first_row, NUM_ROWS); | ||||||
|  |     } else { | ||||||
|  |         if (first_row >= p.stride_d) { | ||||||
|  |             return; | ||||||
|  |         } | ||||||
|  |         compute_outputs(first_row, p.stride_d - first_row); | ||||||
|     } |     } | ||||||
| } | } | ||||||
|   | |||||||
| @@ -7,21 +7,15 @@ | |||||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||||
|  |  | ||||||
| layout (constant_id = 0) const uint BLOCK_SIZE = 32; | layout (constant_id = 0) const uint BLOCK_SIZE = 32; | ||||||
|  | layout (constant_id = 1) const uint NUM_ROWS = 1; | ||||||
|  |  | ||||||
| shared FLOAT_TYPE tmp[BLOCK_SIZE]; | shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; | ||||||
|  |  | ||||||
| void main() { |  | ||||||
|     const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; |  | ||||||
|  |  | ||||||
|     if (row >= p.stride_d) { |  | ||||||
|         return; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|  | void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { | ||||||
|     uint a_offset, b_offset, d_offset; |     uint a_offset, b_offset, d_offset; | ||||||
|     get_offsets(a_offset, b_offset, d_offset); |     get_offsets(a_offset, b_offset, d_offset); | ||||||
|  |  | ||||||
|     const uint num_blocks_per_row = p.ncols / QUANT_K; |     const uint num_blocks_per_row = p.ncols / QUANT_K; | ||||||
|     const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; |  | ||||||
|  |  | ||||||
|     // 16 threads are used to process each block |     // 16 threads are used to process each block | ||||||
|     const uint it_size = gl_WorkGroupSize.x/16; |     const uint it_size = gl_WorkGroupSize.x/16; | ||||||
| @@ -42,12 +36,23 @@ void main() { | |||||||
|     const uint q_offset = 32*v_im + l0; |     const uint q_offset = 32*v_im + l0; | ||||||
|     const uint y_offset = 64*v_im + l0; |     const uint y_offset = 64*v_im + l0; | ||||||
|  |  | ||||||
|     FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp |     FLOAT_TYPE temp[NUM_ROWS]; | ||||||
|  |  | ||||||
|  |     [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { | ||||||
|  |         temp[i] = FLOAT_TYPE(0); | ||||||
|  |     } | ||||||
|  |  | ||||||
|     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { |     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { | ||||||
|         const uint y1_idx = i * QUANT_K + y_offset; |         const uint y1_idx = i * QUANT_K + y_offset; | ||||||
|         const uint y2_idx = y1_idx + 128; |         const uint y2_idx = y1_idx + 128; | ||||||
|  |  | ||||||
|  |         B_TYPE_VEC4 by10 =  data_b_v4[(b_offset + y1_idx) / 4]; | ||||||
|  |         B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8]; | ||||||
|  |         B_TYPE_VEC4 by20 =  data_b_v4[(b_offset + y2_idx) / 4]; | ||||||
|  |         B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8]; | ||||||
|  |  | ||||||
|  |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; | ||||||
|             f16vec2 d = data_a[ib0 + i].d; |             f16vec2 d = data_a[ib0 + i].d; | ||||||
|             const FLOAT_TYPE dall = FLOAT_TYPE(d.x); |             const FLOAT_TYPE dall = FLOAT_TYPE(d.x); | ||||||
|             const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); |             const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); | ||||||
| @@ -98,11 +103,6 @@ void main() { | |||||||
|             const uint32_t q4_14 = qs64_hi4.z; |             const uint32_t q4_14 = qs64_hi4.z; | ||||||
|             const uint32_t q4_15 = qs64_hi4.w; |             const uint32_t q4_15 = qs64_hi4.w; | ||||||
|  |  | ||||||
|         B_TYPE_VEC4 by10 =  data_b_v4[(b_offset + y1_idx) / 4]; |  | ||||||
|         B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8]; |  | ||||||
|         B_TYPE_VEC4 by20 =  data_b_v4[(b_offset + y2_idx) / 4]; |  | ||||||
|         B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8]; |  | ||||||
|  |  | ||||||
|             const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x),      q4_0,  fma(FLOAT_TYPE(by10.y),  q4_1,  fma(FLOAT_TYPE(by10.z),  q4_2,  FLOAT_TYPE(by10.w) *  q4_3))); |             const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x),      q4_0,  fma(FLOAT_TYPE(by10.y),  q4_1,  fma(FLOAT_TYPE(by10.z),  q4_2,  FLOAT_TYPE(by10.w) *  q4_3))); | ||||||
|             const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x),     q4_4,  fma(FLOAT_TYPE(by132.y), q4_5,  fma(FLOAT_TYPE(by132.z), q4_6,  FLOAT_TYPE(by132.w) * q4_7))); |             const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x),     q4_4,  fma(FLOAT_TYPE(by132.y), q4_5,  fma(FLOAT_TYPE(by132.z), q4_6,  FLOAT_TYPE(by132.w) * q4_7))); | ||||||
|             const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x),      q4_8,  fma(FLOAT_TYPE(by20.y),  q4_9,  fma(FLOAT_TYPE(by20.z),  q4_10, FLOAT_TYPE(by20.w) *  q4_11))); |             const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x),      q4_8,  fma(FLOAT_TYPE(by20.y),  q4_9,  fma(FLOAT_TYPE(by20.z),  q4_10, FLOAT_TYPE(by20.w) *  q4_11))); | ||||||
| @@ -112,20 +112,40 @@ void main() { | |||||||
|                 fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, |                 fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, | ||||||
|                 fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, |                 fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, | ||||||
|                 fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6,     FLOAT_TYPE(by232.w) * sc7))))))))))))))); |                 fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6,     FLOAT_TYPE(by232.w) * sc7))))))))))))))); | ||||||
|         temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); |             temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n])); | ||||||
|  |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     tmp[gl_LocalInvocationID.x] = temp; |  | ||||||
|  |  | ||||||
|     // sum up partial sums and write back result |     // sum up partial sums and write back result | ||||||
|  |     [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |         tmpsh[n][tid] = temp[n]; | ||||||
|  |     } | ||||||
|     barrier(); |     barrier(); | ||||||
|     [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { |     [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { | ||||||
|         if (tid < s) { |         if (tid < s) { | ||||||
|             tmp[tid] += tmp[tid + s]; |             [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |                 tmpsh[n][tid] += tmpsh[n][tid + s]; | ||||||
|  |             } | ||||||
|         } |         } | ||||||
|         barrier(); |         barrier(); | ||||||
|     } |     } | ||||||
|     if (tid == 0) { |     if (tid == 0) { | ||||||
|         data_d[d_offset + row] = D_TYPE(tmp[0]); |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | void main() { | ||||||
|  |     const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); | ||||||
|  |  | ||||||
|  |     // do NUM_ROWS at a time, unless there aren't enough remaining rows | ||||||
|  |     if (first_row + NUM_ROWS <= p.stride_d) { | ||||||
|  |         compute_outputs(first_row, NUM_ROWS); | ||||||
|  |     } else { | ||||||
|  |         if (first_row >= p.stride_d) { | ||||||
|  |             return; | ||||||
|  |         } | ||||||
|  |         compute_outputs(first_row, p.stride_d - first_row); | ||||||
|     } |     } | ||||||
| } | } | ||||||
|   | |||||||
| @@ -7,21 +7,15 @@ | |||||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||||
|  |  | ||||||
| layout (constant_id = 0) const uint BLOCK_SIZE = 32; | layout (constant_id = 0) const uint BLOCK_SIZE = 32; | ||||||
|  | layout (constant_id = 1) const uint NUM_ROWS = 1; | ||||||
|  |  | ||||||
| shared FLOAT_TYPE tmp[BLOCK_SIZE]; | shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; | ||||||
|  |  | ||||||
| void main() { |  | ||||||
|     const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; |  | ||||||
|  |  | ||||||
|     if (row >= p.stride_d) { |  | ||||||
|         return; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|  | void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { | ||||||
|     uint a_offset, b_offset, d_offset; |     uint a_offset, b_offset, d_offset; | ||||||
|     get_offsets(a_offset, b_offset, d_offset); |     get_offsets(a_offset, b_offset, d_offset); | ||||||
|  |  | ||||||
|     const uint num_blocks_per_row = p.ncols / QUANT_K; |     const uint num_blocks_per_row = p.ncols / QUANT_K; | ||||||
|     const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; |  | ||||||
|  |  | ||||||
|     // 16 threads are used to process each block |     // 16 threads are used to process each block | ||||||
|     const uint it_size = gl_WorkGroupSize.x/16; |     const uint it_size = gl_WorkGroupSize.x/16; | ||||||
| @@ -39,12 +33,27 @@ void main() { | |||||||
|     const uint q_offset = 32*v_im + l0; |     const uint q_offset = 32*v_im + l0; | ||||||
|     const uint y_offset = 64*v_im + l0; |     const uint y_offset = 64*v_im + l0; | ||||||
|  |  | ||||||
|     FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp |     FLOAT_TYPE temp[NUM_ROWS]; | ||||||
|  |  | ||||||
|  |     [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { | ||||||
|  |         temp[i] = FLOAT_TYPE(0); | ||||||
|  |     } | ||||||
|  |  | ||||||
|     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { |     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { | ||||||
|         const uint y1_idx = i * QUANT_K + y_offset; |         const uint y1_idx = i * QUANT_K + y_offset; | ||||||
|         const uint y2_idx = y1_idx + 128; |         const uint y2_idx = y1_idx + 128; | ||||||
|  |  | ||||||
|  |         B_TYPE_VEC2 by10 =  data_b_v2[(b_offset + y1_idx) / 2]; | ||||||
|  |         B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8]; | ||||||
|  |         B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16]; | ||||||
|  |         B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24]; | ||||||
|  |         B_TYPE_VEC2 by20 =  data_b_v2[(b_offset + y2_idx) / 2]; | ||||||
|  |         B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8]; | ||||||
|  |         B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16]; | ||||||
|  |         B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24]; | ||||||
|  |  | ||||||
|  |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; | ||||||
|             f16vec2 d = data_a[ib0 + i].d; |             f16vec2 d = data_a[ib0 + i].d; | ||||||
|             const FLOAT_TYPE dall = FLOAT_TYPE(d.x); |             const FLOAT_TYPE dall = FLOAT_TYPE(d.x); | ||||||
|             const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); |             const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); | ||||||
| @@ -107,15 +116,6 @@ void main() { | |||||||
|             const uint32_t q4_14 = qs64_80_hi4.z; |             const uint32_t q4_14 = qs64_80_hi4.z; | ||||||
|             const uint32_t q4_15 = qs64_80_hi4.w; |             const uint32_t q4_15 = qs64_80_hi4.w; | ||||||
|  |  | ||||||
|         B_TYPE_VEC2 by10 =  data_b_v2[(b_offset + y1_idx) / 2]; |  | ||||||
|         B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8]; |  | ||||||
|         B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16]; |  | ||||||
|         B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24]; |  | ||||||
|         B_TYPE_VEC2 by20 =  data_b_v2[(b_offset + y2_idx) / 2]; |  | ||||||
|         B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8]; |  | ||||||
|         B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16]; |  | ||||||
|         B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24]; |  | ||||||
|  |  | ||||||
|             const FLOAT_TYPE sx = |             const FLOAT_TYPE sx = | ||||||
|               fma(FLOAT_TYPE(by10.x), q4_0, |               fma(FLOAT_TYPE(by10.x), q4_0, | ||||||
|               fma(FLOAT_TYPE(by10.y), q4_1, |               fma(FLOAT_TYPE(by10.y), q4_1, | ||||||
| @@ -141,20 +141,40 @@ void main() { | |||||||
|               fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, |               fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, | ||||||
|               fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, |               fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, | ||||||
|                   (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); |                   (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); | ||||||
|         temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); |             temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n])); | ||||||
|  |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     tmp[gl_LocalInvocationID.x] = temp; |  | ||||||
|  |  | ||||||
|     // sum up partial sums and write back result |     // sum up partial sums and write back result | ||||||
|  |     [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |         tmpsh[n][tid] = temp[n]; | ||||||
|  |     } | ||||||
|     barrier(); |     barrier(); | ||||||
|     [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { |     [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { | ||||||
|         if (tid < s) { |         if (tid < s) { | ||||||
|             tmp[tid] += tmp[tid + s]; |             [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |                 tmpsh[n][tid] += tmpsh[n][tid + s]; | ||||||
|  |             } | ||||||
|         } |         } | ||||||
|         barrier(); |         barrier(); | ||||||
|     } |     } | ||||||
|     if (tid == 0) { |     if (tid == 0) { | ||||||
|         data_d[d_offset + row] = D_TYPE(tmp[0]); |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | void main() { | ||||||
|  |     const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); | ||||||
|  |  | ||||||
|  |     // do NUM_ROWS at a time, unless there aren't enough remaining rows | ||||||
|  |     if (first_row + NUM_ROWS <= p.stride_d) { | ||||||
|  |         compute_outputs(first_row, NUM_ROWS); | ||||||
|  |     } else { | ||||||
|  |         if (first_row >= p.stride_d) { | ||||||
|  |             return; | ||||||
|  |         } | ||||||
|  |         compute_outputs(first_row, p.stride_d - first_row); | ||||||
|     } |     } | ||||||
| } | } | ||||||
|   | |||||||
| @@ -7,21 +7,15 @@ | |||||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||||
|  |  | ||||||
| layout (constant_id = 0) const uint BLOCK_SIZE = 32; | layout (constant_id = 0) const uint BLOCK_SIZE = 32; | ||||||
|  | layout (constant_id = 1) const uint NUM_ROWS = 1; | ||||||
|  |  | ||||||
| shared FLOAT_TYPE tmp[BLOCK_SIZE]; | shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; | ||||||
|  |  | ||||||
| void main() { |  | ||||||
|     const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; |  | ||||||
|  |  | ||||||
|     if (row >= p.stride_d) { |  | ||||||
|         return; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|  | void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { | ||||||
|     uint a_offset, b_offset, d_offset; |     uint a_offset, b_offset, d_offset; | ||||||
|     get_offsets(a_offset, b_offset, d_offset); |     get_offsets(a_offset, b_offset, d_offset); | ||||||
|  |  | ||||||
|     const uint num_blocks_per_row = p.ncols / QUANT_K; |     const uint num_blocks_per_row = p.ncols / QUANT_K; | ||||||
|     const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; |  | ||||||
|  |  | ||||||
|     // 16 threads are used to process each block |     // 16 threads are used to process each block | ||||||
|     const uint it_size = gl_WorkGroupSize.x/16; |     const uint it_size = gl_WorkGroupSize.x/16; | ||||||
| @@ -42,11 +36,22 @@ void main() { | |||||||
|     const uint s_offset  =  8*v_im + is; |     const uint s_offset  =  8*v_im + is; | ||||||
|     const uint y_offset = 128*v_im + l0; |     const uint y_offset = 128*v_im + l0; | ||||||
|  |  | ||||||
|     FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp |     FLOAT_TYPE temp[NUM_ROWS]; | ||||||
|  |  | ||||||
|  |     [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { | ||||||
|  |         temp[i] = FLOAT_TYPE(0); | ||||||
|  |     } | ||||||
|  |  | ||||||
|     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { |     [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { | ||||||
|         const uint y_idx = i * QUANT_K + y_offset; |         const uint y_idx = i * QUANT_K + y_offset; | ||||||
|  |  | ||||||
|  |         B_TYPE_VEC4 by0  = data_b_v4[(b_offset + y_idx) / 4]; | ||||||
|  |         B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8]; | ||||||
|  |         B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16]; | ||||||
|  |         B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24]; | ||||||
|  |  | ||||||
|  |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; | ||||||
|             const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); |             const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); | ||||||
|  |  | ||||||
|             FLOAT_TYPE scales[4]; |             FLOAT_TYPE scales[4]; | ||||||
| @@ -79,11 +84,6 @@ void main() { | |||||||
|             uvec4 q2 = uvec4(unpack8(q2_u32)); |             uvec4 q2 = uvec4(unpack8(q2_u32)); | ||||||
|             uvec4 q3 = uvec4(unpack8(q3_u32)); |             uvec4 q3 = uvec4(unpack8(q3_u32)); | ||||||
|  |  | ||||||
|         B_TYPE_VEC4 by0  = data_b_v4[(b_offset + y_idx) / 4]; |  | ||||||
|         B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8]; |  | ||||||
|         B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16]; |  | ||||||
|         B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24]; |  | ||||||
|  |  | ||||||
|             FLOAT_TYPE sum = FLOAT_TYPE(0.0); |             FLOAT_TYPE sum = FLOAT_TYPE(0.0); | ||||||
|             [[unroll]] for (int l = 0; l < 4; ++l) { |             [[unroll]] for (int l = 0; l < 4; ++l) { | ||||||
|                 sum = fma(FLOAT_TYPE(by0[l])  * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), |                 sum = fma(FLOAT_TYPE(by0[l])  * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), | ||||||
| @@ -91,20 +91,40 @@ void main() { | |||||||
|                       fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), |                       fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), | ||||||
|                       fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); |                       fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); | ||||||
|             } |             } | ||||||
|         temp += sum * d; |             temp[n] += sum * d; | ||||||
|  |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     tmp[gl_LocalInvocationID.x] = temp; |  | ||||||
|     // sum up partial sums and write back result |     // sum up partial sums and write back result | ||||||
|  |     [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |         tmpsh[n][tid] = temp[n]; | ||||||
|  |     } | ||||||
|     barrier(); |     barrier(); | ||||||
|     [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { |     [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { | ||||||
|         if (tid < s) { |         if (tid < s) { | ||||||
|             tmp[tid] += tmp[tid + s]; |             [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |                 tmpsh[n][tid] += tmpsh[n][tid + s]; | ||||||
|  |             } | ||||||
|         } |         } | ||||||
|         barrier(); |         barrier(); | ||||||
|     } |     } | ||||||
|     if (tid == 0) { |     if (tid == 0) { | ||||||
|         data_d[d_offset + row] = D_TYPE(tmp[0]); |         [[unroll]] for (uint n = 0; n < num_rows; ++n) { | ||||||
|  |             data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | void main() { | ||||||
|  |     const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); | ||||||
|  |  | ||||||
|  |     // do NUM_ROWS at a time, unless there aren't enough remaining rows | ||||||
|  |     if (first_row + NUM_ROWS <= p.stride_d) { | ||||||
|  |         compute_outputs(first_row, NUM_ROWS); | ||||||
|  |     } else { | ||||||
|  |         if (first_row >= p.stride_d) { | ||||||
|  |             return; | ||||||
|  |         } | ||||||
|  |         compute_outputs(first_row, p.stride_d - first_row); | ||||||
|     } |     } | ||||||
| } | } | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Eve
					Eve