mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-28 08:31:25 +00:00
tests: large sizes for get_rows (#15687)
This commit is contained in:
@@ -1957,24 +1957,25 @@ struct test_get_rows : public test_case {
|
||||
const int n; // cols
|
||||
const int m; // rows
|
||||
const int r; // rows to get
|
||||
const int b; // batch size
|
||||
const int be1; // batch size
|
||||
const int be2; // batch size
|
||||
const bool v; // view (non-contiguous src1)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR6(type, n, m, r, b, v);
|
||||
return VARS_TO_STR7(type, n, m, r, be1, be2, v);
|
||||
}
|
||||
|
||||
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
|
||||
: type(type), n(n), m(m), r(r), b(b), v(v) {}
|
||||
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
|
||||
: type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
|
||||
ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
|
||||
ggml_set_name(in, "in");
|
||||
|
||||
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
|
||||
ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
|
||||
ggml_set_name(rows, "rows");
|
||||
if (v) {
|
||||
rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
|
||||
rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
|
||||
ggml_set_name(rows, "view_of_rows");
|
||||
}
|
||||
|
||||
@@ -1995,11 +1996,11 @@ struct test_get_rows : public test_case {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
// rows
|
||||
std::vector<int> data(r*b);
|
||||
for (int i = 0; i < r*b; i++) {
|
||||
std::vector<int> data(r*be1*be2);
|
||||
for (int i = 0; i < r*be1*be2; i++) {
|
||||
data[i] = rand() % m;
|
||||
}
|
||||
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
|
||||
ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
@@ -5620,17 +5621,23 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
||||
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
|
||||
test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
|
||||
test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
|
||||
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
|
||||
for (ggml_type type : all_types) {
|
||||
for (int b : {1, 7}) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
|
||||
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int b : {1, 7}) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user