mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : reorder build_orion() at correct place (#5118)
This commit is contained in:
		
							
								
								
									
										239
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										239
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -4666,126 +4666,6 @@ struct llm_build_context { | ||||
|             ctx0 = nullptr; | ||||
|         } | ||||
|     } | ||||
|     struct ggml_cgraph * build_orion() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); | ||||
|         cb(inpL, "inp_embd", -1); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); | ||||
|         cb(inp_pos, "inp_pos", -1); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); | ||||
|         cb(KQ_mask, "KQ_mask", -1); | ||||
|  | ||||
|         // shift the entire K-cache if needed | ||||
|         if (do_rope_shift) { | ||||
|             llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); | ||||
|         } | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             // norm | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, model.layers[il].attn_norm_b, | ||||
|                     LLM_NORM, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 // compute Q and K and RoPE them | ||||
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 // if (model.layers[il].bq) { | ||||
|                 //     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); | ||||
|                 //     cb(Qcur, "Qcur", il); | ||||
|                 // } | ||||
|  | ||||
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 // if (model.layers[il].bk) { | ||||
|                 //     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); | ||||
|                 //     cb(Kcur, "Kcur", il); | ||||
|                 // } | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|                 // if (model.layers[il].bv) { | ||||
|                 //     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); | ||||
|                 //     cb(Vcur, "Vcur", il); | ||||
|                 // } | ||||
|  | ||||
|                 Qcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 Kcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, | ||||
|                         model.layers[il].wo, NULL, | ||||
|                         Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|                 cb(cur, "kqv_out", il); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // feed-forward network | ||||
|             cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                     model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, | ||||
|                     LLM_NORM, cb, il); | ||||
|             cb(cur, "ffn_norm", il); | ||||
|  | ||||
|             cur = llm_build_ffn(ctx0, cur, | ||||
|                     model.layers[il].ffn_up,   NULL, | ||||
|                     model.layers[il].ffn_gate, NULL, | ||||
|                     model.layers[il].ffn_down, NULL, | ||||
|                     NULL, | ||||
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il); | ||||
|             cb(cur, "ffn_out", il); | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, cur, hparams, | ||||
|                 model.output_norm, model.output_norm_b, | ||||
|                 LLM_NORM, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         // lm_head | ||||
|         cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|  | ||||
|  | ||||
|     struct ggml_cgraph * build_llama() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
| @@ -6589,6 +6469,125 @@ struct llm_build_context { | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_orion() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); | ||||
|         cb(inpL, "inp_embd", -1); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); | ||||
|         cb(inp_pos, "inp_pos", -1); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); | ||||
|         cb(KQ_mask, "KQ_mask", -1); | ||||
|  | ||||
|         // shift the entire K-cache if needed | ||||
|         if (do_rope_shift) { | ||||
|             llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); | ||||
|         } | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             // norm | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, model.layers[il].attn_norm_b, | ||||
|                     LLM_NORM, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 // compute Q and K and RoPE them | ||||
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 // if (model.layers[il].bq) { | ||||
|                 //     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); | ||||
|                 //     cb(Qcur, "Qcur", il); | ||||
|                 // } | ||||
|  | ||||
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 // if (model.layers[il].bk) { | ||||
|                 //     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); | ||||
|                 //     cb(Kcur, "Kcur", il); | ||||
|                 // } | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|                 // if (model.layers[il].bv) { | ||||
|                 //     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); | ||||
|                 //     cb(Vcur, "Vcur", il); | ||||
|                 // } | ||||
|  | ||||
|                 Qcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 Kcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, | ||||
|                         model.layers[il].wo, NULL, | ||||
|                         Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|                 cb(cur, "kqv_out", il); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // feed-forward network | ||||
|             cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                     model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, | ||||
|                     LLM_NORM, cb, il); | ||||
|             cb(cur, "ffn_norm", il); | ||||
|  | ||||
|             cur = llm_build_ffn(ctx0, cur, | ||||
|                     model.layers[il].ffn_up,   NULL, | ||||
|                     model.layers[il].ffn_gate, NULL, | ||||
|                     model.layers[il].ffn_down, NULL, | ||||
|                     NULL, | ||||
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il); | ||||
|             cb(cur, "ffn_out", il); | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, cur, hparams, | ||||
|                 model.output_norm, model.output_norm_b, | ||||
|                 LLM_NORM, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         // lm_head | ||||
|         cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| static struct ggml_cgraph * llama_build_graph( | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov