mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : support InternLM2 (#5184)
* support InternLM2 inference * add add_space_prefix KV pair
This commit is contained in:
		
							
								
								
									
										205
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										205
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -204,6 +204,7 @@ enum llm_arch { | ||||
|     LLM_ARCH_PLAMO, | ||||
|     LLM_ARCH_CODESHELL, | ||||
|     LLM_ARCH_ORION, | ||||
|     LLM_ARCH_INTERNLM2, | ||||
|     LLM_ARCH_UNKNOWN, | ||||
| }; | ||||
|  | ||||
| @@ -226,6 +227,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = { | ||||
|     { LLM_ARCH_PLAMO,           "plamo"     }, | ||||
|     { LLM_ARCH_CODESHELL,       "codeshell" }, | ||||
|     { LLM_ARCH_ORION,           "orion"     }, | ||||
|     { LLM_ARCH_INTERNLM2,       "internlm2" }, | ||||
| }; | ||||
|  | ||||
| enum llm_kv { | ||||
| @@ -278,6 +280,7 @@ enum llm_kv { | ||||
|     LLM_KV_TOKENIZER_PAD_ID, | ||||
|     LLM_KV_TOKENIZER_ADD_BOS, | ||||
|     LLM_KV_TOKENIZER_ADD_EOS, | ||||
|     LLM_KV_TOKENIZER_ADD_PREFIX, | ||||
|     LLM_KV_TOKENIZER_HF_JSON, | ||||
|     LLM_KV_TOKENIZER_RWKV, | ||||
| }; | ||||
| @@ -332,6 +335,7 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = { | ||||
|     { LLM_KV_TOKENIZER_PAD_ID,              "tokenizer.ggml.padding_token_id"   }, | ||||
|     { LLM_KV_TOKENIZER_ADD_BOS,             "tokenizer.ggml.add_bos_token"      }, | ||||
|     { LLM_KV_TOKENIZER_ADD_EOS,             "tokenizer.ggml.add_eos_token"      }, | ||||
|     { LLM_KV_TOKENIZER_ADD_PREFIX,          "tokenizer.ggml.add_space_prefix"   }, | ||||
|     { LLM_KV_TOKENIZER_HF_JSON,             "tokenizer.huggingface.json"        }, | ||||
|     { LLM_KV_TOKENIZER_RWKV,                "tokenizer.rwkv.world"              }, | ||||
| }; | ||||
| @@ -669,7 +673,23 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|  | ||||
|     { | ||||
|         LLM_ARCH_INTERNLM2, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,          "output" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" }, | ||||
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" }, | ||||
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" }, | ||||
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" }, | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_UNKNOWN, | ||||
|         { | ||||
| @@ -1377,6 +1397,7 @@ enum e_model { | ||||
|     MODEL_13B, | ||||
|     MODEL_14B, | ||||
|     MODEL_15B, | ||||
|     MODEL_20B, | ||||
|     MODEL_30B, | ||||
|     MODEL_34B, | ||||
|     MODEL_40B, | ||||
| @@ -1618,6 +1639,8 @@ struct llama_vocab { | ||||
|     id special_suffix_id = 32008; | ||||
|     id special_eot_id    = 32010; | ||||
|  | ||||
|     bool add_space_prefix = true; | ||||
|  | ||||
|     int find_bpe_rank(const std::string & token_left, const std::string & token_right) const { | ||||
|         GGML_ASSERT(token_left.find(' ') == std::string::npos); | ||||
|         GGML_ASSERT(token_left.find('\n') == std::string::npos); | ||||
| @@ -2731,6 +2754,7 @@ static const char * llama_model_type_name(e_model type) { | ||||
|         case MODEL_13B:    return "13B"; | ||||
|         case MODEL_14B:    return "14B"; | ||||
|         case MODEL_15B:    return "15B"; | ||||
|         case MODEL_20B:    return "20B"; | ||||
|         case MODEL_30B:    return "30B"; | ||||
|         case MODEL_34B:    return "34B"; | ||||
|         case MODEL_40B:    return "40B"; | ||||
| @@ -2743,6 +2767,14 @@ static const char * llama_model_type_name(e_model type) { | ||||
|         default:           return "?B"; | ||||
|     } | ||||
| } | ||||
| static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ | ||||
|     switch (type) { | ||||
|         case LLAMA_VOCAB_TYPE_SPM:         return "SPM"; | ||||
|         case LLAMA_VOCAB_TYPE_BPE:         return "BPE"; | ||||
|         default:                           return "unknown"; | ||||
|     } | ||||
| } | ||||
|  | ||||
|  | ||||
| static void llm_load_arch(llama_model_loader & ml, llama_model & model) { | ||||
|     model.arch = ml.get_arch(); | ||||
| @@ -3006,6 +3038,15 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_INTERNLM2: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 32: model.type = e_model::MODEL_7B; break; | ||||
|                     case 48: model.type = e_model::MODEL_20B; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         default: (void)0; | ||||
|     } | ||||
|  | ||||
| @@ -3057,6 +3098,11 @@ static void llm_load_vocab( | ||||
|             vocab.special_unk_id = 0; | ||||
|             vocab.special_sep_id = -1; | ||||
|             vocab.special_pad_id = -1; | ||||
|  | ||||
|             const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); | ||||
|             if (add_space_prefix_keyidx != -1) { | ||||
|                 vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); | ||||
|             } // The default value of add_space_prefix is true. | ||||
|         } else if (tokenizer_name == "gpt2") { | ||||
|             vocab.type = LLAMA_VOCAB_TYPE_BPE; | ||||
|  | ||||
| @@ -3269,7 +3315,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { | ||||
|     // hparams | ||||
|     LLAMA_LOG_INFO("%s: format           = %s\n",     __func__, llama_file_version_name(ml.fver)); | ||||
|     LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, LLM_ARCH_NAMES.at(model.arch).c_str()); | ||||
|     LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix | ||||
|     LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, llama_model_vocab_type_name(vocab.type)); | ||||
|     LLAMA_LOG_INFO("%s: n_vocab          = %u\n",     __func__, hparams.n_vocab); | ||||
|     LLAMA_LOG_INFO("%s: n_merges         = %u\n",     __func__, (int) vocab.bpe_ranks.size()); | ||||
|     LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train); | ||||
| @@ -4018,8 +4064,35 @@ static bool llm_load_tensors( | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_INTERNLM2: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
|  | ||||
|                     // output | ||||
|                     { | ||||
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); | ||||
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}); | ||||
|                     } | ||||
|  | ||||
|                     for (int i = 0; i < n_layer; ++i) { | ||||
|                         ggml_context * ctx_layer = ctx_for_layer(i); | ||||
|                         ggml_context * ctx_split = ctx_for_layer_split(i); | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); | ||||
|                         // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); | ||||
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}); | ||||
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|  | ||||
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); | ||||
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); | ||||
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}); | ||||
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}); | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}); | ||||
|                     } | ||||
|                 } break; | ||||
|             default: | ||||
|                 throw std::runtime_error("unknown architecture"); | ||||
|         } | ||||
| @@ -6588,6 +6661,126 @@ struct llm_build_context { | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_internlm2() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); | ||||
|         cb(inpL, "inp_embd", -1); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); | ||||
|         cb(inp_pos, "inp_pos", -1); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); | ||||
|         cb(KQ_mask, "KQ_mask", -1); | ||||
|  | ||||
|         // shift the entire K-cache if needed | ||||
|         if (do_rope_shift) { | ||||
|             llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); | ||||
|         } | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             // norm | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 // compute Q and K and RoPE them | ||||
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 if (model.layers[il].bq) { | ||||
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); | ||||
|                     cb(Qcur, "Qcur", il); | ||||
|                 } | ||||
|  | ||||
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 if (model.layers[il].bk) { | ||||
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); | ||||
|                     cb(Kcur, "Kcur", il); | ||||
|                 } | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|                 if (model.layers[il].bv) { | ||||
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); | ||||
|                     cb(Vcur, "Vcur", il); | ||||
|                 } | ||||
|  | ||||
|                 Qcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 Kcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, | ||||
|                         model.layers[il].wo, model.layers[il].bo, | ||||
|                         Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|                 cb(cur, "kqv_out", il); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // feed-forward network | ||||
|             cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                     model.layers[il].ffn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "ffn_norm", il); | ||||
|  | ||||
|             cur = llm_build_ffn(ctx0, cur, | ||||
|                     model.layers[il].ffn_up,   NULL, | ||||
|                     model.layers[il].ffn_gate, NULL, | ||||
|                     model.layers[il].ffn_down, NULL, | ||||
|                     NULL, | ||||
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il); | ||||
|             cb(cur, "ffn_out", il); | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, cur, hparams, | ||||
|                 model.output_norm, NULL, | ||||
|                 LLM_NORM_RMS, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         // lm_head | ||||
|         cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
| }; | ||||
|  | ||||
| static struct ggml_cgraph * llama_build_graph( | ||||
| @@ -6746,6 +6939,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm.build_orion(); | ||||
|             } break; | ||||
|         case LLM_ARCH_INTERNLM2: | ||||
|             { | ||||
|                 result = llm.build_internlm2(); | ||||
|             } break; | ||||
|         default: | ||||
|             GGML_ASSERT(false); | ||||
|     } | ||||
| @@ -7688,7 +7885,9 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & | ||||
|                         // | ||||
|                         auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); | ||||
|                         if (&fragment == &fragment_buffer.front()) { | ||||
|                             raw_text = " " + raw_text; // prefix with space if the first token is not special | ||||
|                             if (vocab.add_space_prefix) { | ||||
|                                 raw_text = " " + raw_text; // prefix with space if the first token is not special | ||||
|                             } | ||||
|                         } | ||||
|  | ||||
| #ifdef PRETOKENIZERDEBUG | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Guoteng
					Guoteng